Содержание

Ветроэнергетика не экологична и совсем не делает мир лучше — обозреватель Spectator

В своем последнем докладе Глобальный совет по ветроэнергетике восторженно расписывал, что «доля ветроэнергетики на глобальном энергетическом рынке растет бешеными темпами после публикации данных о том, что более 54 гигаватт экологически чистой возобновляемой энергии ветра было поставлено на мировой рынок в прошлом году». 

Благодаря подобным заявлениям и непременным фотографиям ветряков в каждом репортаже BBC и на рекламных баннерах в аэропортах у вас могло возникнуть впечатление, что сегодня ветроэнергетика вносит большой вклад в общемировой объем вырабатываемой энергии. Вы будете неправы. До сих пор ее вклад после десятилетий — нет, даже столетий — развития пренебрежимо мал.

Угадайте ближайшее целое число к тому, какой процент в общемировом потреблении энергии составила энергия ветра в 2014 году — последнем году, для которого существуют надежные данные? 20 процентов, 10 процентов или 5 процентов? Ничего из этого. Н-О-Л-Ь процентов.

То есть, если брать ближайшее целое число, то энергии, получаемой из ветра, на Земле фактически не существует.

Ветер и солнечные батареи дают менее одного процента общемировой потребности в энергии, даже если сложить их вместе. Из экспертного анализа Международного энергетического агентства «Ключевые тренды возобновляемых источников энергии 2016» мы видим, что ветроэнергетика покрыла 0,46% глобального потребления энергии в 2014 году, а солнечная энергия и энергия приливов вместе составили 0,35%. Помните: это совокупная энергия, а не только электричество, которое составляет менее пятой части всей энергии; остальное составляют твердое, жидкое и газообразное топливо, принимающие на себя основную нагрузку в отоплении, транспорте и промышленности.

Эти цифры нетрудно найти, но они не фигурируют в отчетах по энергетике, полученных от не заслуживающих доверия лобби (солнечной энергии и ветроэнергетики). Их хитрость в том, чтобы прятаться за утверждением, что около 14% энергии в мире добывается из возобновляемых источников, подразумевая, что это энергия солнца и ветра.

В действительности же бóльшая ее часть — три четверти — это энергия из биомассы (в основном древесины), и очень большую долю в этом составляет «традиционная биомасса»: хворост, дрова, навоз, которые сжигают бедняки для приготовления пищи. Бедным людям необходима эта энергия, но они дорого за нее расплачиваются, получая проблемы со здоровьем от вдыхания дыма.

Даже в богатых странах, заигрывающих с субсидируемой энергией ветра и солнца, огромная часть возобновляемой энергии приходится на надежные возобновляемые источники энергии — воду и древесину.

Тем временем мировая потребность в энергии растет примерно на 2% в год уже на протяжении почти 40 лет. Между 2013 и 2014 годами, снова согласно данным Международного энергетического агентства, она выросла почти на 2000 ТВт·ч.

Сколько ветряков требовалось бы строить каждый год, если бы они обеспечивали энергетическую потребность только в объеме этого роста и не более? Ответ: около 350 тысяч штук, так как двухмегаваттная турбина может производить около 0,005 ТВт·ч энергии в год. Это в полтора раза больше, чем было построено во всем мире с тех пор, как правительства начали вливать деньги налогоплательщиков в эту так называемую отрасль промышленности в начале 2000-х.

При типичной для ветроферм плотности — очень грубо — 50 акров (~20 гектаров — прим. пер.) на мегаватт для такого количества ветряков потребуется площадь больше, чем занимают Британские острова вместе с Ирландией. Каждый год. Если бы мы продолжали в том же духе в течение 50 лет, то застроили бы ветрофермами каждую квадратную милю суши, равную по площади территории России. И это только для того, чтобы покрыть новую потребность, а не заместить весь громадный объем энергии, получаемой из ископаемого топлива, которое сейчас обеспечивает 80% общемировой потребности.

Не тешьте себя надеждой, что турбины ветрогенераторов со временем могут стать эффективнее. Существует предел того, сколько энергии можно извлечь из двигающихся жидкостей — предел Бетца, и турбины ветряков уже близки к нему. Их эффективность (фактор нагрузки, если использовать инженерный термин) определяется дующими ветрами, которые меняются по своему собственному желанию от секунды к секунде, изо дня в день, из года в год.

Так как механизмы, турбины ветрогенераторов уже достаточно совершенны, проблема в самом ветре, и это мы изменить не можем. Ветер — это изменяющийся поток энергии низкой плотности, человечество уже давно по разумным причинам перестало его использовать для критически важных транспортных и механических мощностей. Он просто недостаточно

хорош.

Что касается затрат ресурсов и влияния на экологию. Прямые следствия строительства ветряков — смерть птиц и летучих мышей, проседание бетонных оснований вглубь почвы — это уже достаточно плохо. Вне поля зрения и внимания остается загрязнение окружающей среды, например, в Монголии. Добыча редкоземельных металлов для производства магнитов турбин порождает токсические и радиоактивные отходы в эпических масштабах, поэтому фраза «чистая энергия» — это настолько жестокая шутка, что министрам должно быть стыдно всякий раз, когда она вылетает из их уст.

Дальше — хуже. Ветрогенераторы, кроме стекловолоконных лопастей, состоят в основном из стали и бетонных оснований. Им требуется в 200 раз больше материала на единицу мощности по сравнению с современной газотурбинной установкой комбинированного цикла. Сталь производится с использованием каменного угля — не только для выплавки руды, но и для добавления углерода в сплав. Цемент тоже часто производится с использованием каменного угля. Механизмы «экологически чистой» возобновляемой энергии — это продукты экономики ископаемого топлива, в основном угольной экономики.

Двухмегаваттный ветряк весит около 250 тонн, включая башню, гондолу, ротор и лопасти. Во всем мире для выплавления одной тонны стали требуется около полутонны каменного угля. Добавьте еще 25 тонн угля для производства цемента – и мы получим 150 тонн угля на один ветряк. Итак, если нам нужно строить 350 тысяч ветрогенераторов в год (или несколько меньшее количество больших ветряков) только для того, чтобы покрыть растущие потребности в энергии, потребуется 50 миллионов тонн каменного угля в год. Это около половины всей добычи Европейского союза.

Простите, если вы уже слышали об этом раньше, но у меня в каменном угле есть коммерческий интерес. И теперь получается, что благодаря ему же у меня появляются коммерческие интересы в «экологически чистой» зеленой ветроэнергетике.

Смысл рассмотрения всех этих цифр — показать, что априори абсолютно бессмысленно даже думать, что ветроэнергетика может внести какой-то существенный вклад в мировое производство энергии, не говоря уже о сокращении вредных выбросов, без разрушения планеты. Как много лет назад отметил ныне покойный Дэвид Маккей, арифметика против таких ненадежных возобновляемых источников энергии.

Правда в том, что если вы хотите запитать энергией цивилизацию с меньшим выбросом парниковых газов, нужно сфокусироваться на переводе производства энергии, обогрева и транспорта на природный газ, извлекаемые запасы которого — благодаря горизонтальному бурению и гидроразрыву породы — гораздо богаче, чем мы могли когда-либо мечтать.

Также из всего ископаемого топлива газ производит наименьшее количество вредных выбросов, поэтому интенсивность загрязнения окружающей среды при создании материальных ценностей может даже уменьшиться в то время, как наше богатство продолжит расти.

Здорово.

И давайте вложим некоторую часть нашего растущего богатства в атомную энергию и термоядерный синтез, чтобы они могли заменить газ во второй половине этого века. Вот это  конструируемое, экологически чистое будущее. Все прочее — политические манипуляции, контрпродуктивные, как и климатическая политика, и, что еще хуже, приводящие ко все большему бессовестному ограблению бедных, чтобы сделать богатых еще богаче.

Материалы по теме:

Этот японский стартап производит бумагу… из камня

В Лондоне изобрели съедобную бутылку для воды

«Да, я верю в водородную экономику» – почему надо прекратить бороться за нефть

В Стокгольме будут обогревать дома излишками тепла от дата-центров

Эти три блокчейн-стартапа меняют наше представление об энергетике

Фото на обложке: chungking/Depositphotos.

Ветровая электростанция Фортум в Ульяновской области

Ветряная электрическая станция в Ульяновской области

Почти половина инвестиций Fortum — это инвестиции в возобновляемую энергетику. Россия, традиционно сильная в гидрогенерации,  имеет огромный потенциал для развития возобновляемых источников энергии (ВИЭ). Министерство энергетики РФ сообщает, что за 2017 год в стране было построено больше мощностей возобновляемых источников энергии, чем за предыдущие два года: в 2015-2016 годах было введено 130 МВт ВИЭ, а в 2017 году — 140 МВт, из них более 100 МВт приходятся на солнечные электростанции, а 35 МВт — на первый крупный ветропарк, построенный Fortum  в Ульяновской области.

С января 2018 г. ветряная электрическая станция (ВЭС) Fortum в Ульяновске включена в реестр мощности. ВЭС с установленной мощностью 35 мегаватт стала первым генерирующим объектом, который работает на основе использования энергии ветра на оптовом рынке электроэнергии и мощности (ОРЭМ). Ульяновская ВЭС будет получать гарантированные платежи за мощность по договору о предоставлении мощности (ДПМ) в течение 15 лет.

Монтаж каждой ветроустановки в среднем составляет пять суток. Для сборки одновременно используется два подъемные крана.
Успех обеспечивают строжайшее соблюдение правил промышленной безопасности и охраны труда.

Новая ВЭС с установленной мощностью 35 мегаватт стала первым  генерирующим объектом, функционирующим на основе использования энергии ветра, начавшим работу на оптовом рынке электроэнергии и мощности (ОРЭМ).

В 2018 г. ветряная электрическая станция (ВЭС) Fortum в Ульяновске включена в реестр мощности

По итогам первого полугодия 2018 года Ульяновская ВЭС-1 выработала 48,6 млн кВт*ч чистой энергии. Коэффициент использования установленной мощности составил 32%. УВЭС-1 – в числе мировых лидеров по эффективности.

180 дней работы УВЭС
В 2017 году ПАО «Фортум» и РОСНАНО создали совместный инвестиционный фонд развития ветроэнергетики в России. Фонд получил право на строительство 1000 МВт на основе использования возобновляемых источников энергии в 2018-2022 годах

Мощность ветра

Что такое ветроэнергетика?

Ветроэнергетика — отрасль энергетики, специализирующаяся на использовании энергии ветра.

Это перспективное направление, базирующейся на неисчерпаемом природном ресурсе. В последние годы освоение энергии ветра происходит весьма стремительно по всему миру. Прослеживается тенденция к дальнейшему развитию распространения технологии.

Как работают ветряные электростанции?

Ветряная электростанция — это несколько ВЭУ, собранных в одном или нескольких местах и объединенных в единую сеть.

Ветроэлектрическая установка представляет собой устройство для выработки электроэнергии путем преобразования кинетической энергии ветра в электрическую энергию с использованием низкооборотного генератора с прямым приводом на постоянном магните. Это оптимизирует эксплуатационный режим, снижает шум и повышает надежность ВЭУ в целом.

Как используется энергия ветра?

Электричество, создаваемое ВЭС, поступает на оптовый рынок электроэнергии и мощности. Затем наравне с энергией, полученной другими способами, обеспечивает ресурсом потребителей.

Но в отличие от других источников энергия ветра возобновляется, а ее производство не приносит вреда экологии. Поэтому она играет важную роль в переходе к чистому энергетическому будущему.

От чего зависит мощность ветроустановки?

Мощность ветроустановки зависит от нескольких факторов: от скорости ветра, диаметра ветроколеса, плотности воздуха. А также от коэффициента использования энергии ветра, коэффициентов полезного действия редуктора и электрогенератора. Чем выше эти показатели, тем больше мощность ВЭУ.

Из каких материалов состоят ветрогенераторы?

Элементы башенной конструкции сделаны из низколегированной конструкционной стали марки S355J2. Аналогичный высокопрочный металл используют для производства опор ЛЭП, мостов, нефтяных и газовых морских платформ. Производство башен для ВЭУ осуществляется в Таганроге (Ростовская область).

Однако самой сложной в производстве частью ветроустановок является лопасть. Она изготавливается из композитных материалов и представляет собой цельную 62-метровую конструкцию. Технологии создания лопасти во многом идентичны производству крыла самолета. В декабре 2018 года уникальное производство лопастей было открыто в Ульяновской области.

Где строят ветроустановки?

Ветровые турбины устанавливаются в районах с регулярным ветром. Россия имеет огромный потенциал в этом направлении. В регионах, где стабилен данный энергоресурс, рационально строить ветряные электростанции. Но если ветер непостоянен, то, возможно, целесообразнее подумать о солнечной электростанции.

Не наносят ли ветряки вред окружающей среде?

Большинство ученых и представителей экспертного сообщества сходятся во мнении, что объекты ветро- и солнечной энергетики вносят большой вклад в минимизацию антропогенного воздействия на климат и окружающую среду. Электроэнергия от объектов ВИЭ замещает выработку традиционных электростанций, работающих на угле или газе, благодаря чему снижаются выбросы загрязняющих веществ в атмосферу.

При проектировании ветропарков всегда проводятся орнитологические наблюдения, изучаются маршруты миграции птиц в районе. Чтобы избежать столкновения птиц с ветроэнергетическими установками, каждая башня оборудована репеллентными устройствами, издающими звук для отпугивания пернатых, а каждая лопасть ветроколеса имеет полосы красного цвета, что делает ее более различимой на фоне ландшафта.

Операционный портфель «Фортум» в области возобновляемой энергетики превысил 1 ГВт

Компания является активным участником развития возобновляемых источников энергии в России.

Подробнее

Солнце

Солнечные электростанции Fortum в России

Подробнее

Как работают ветряные турбины?

Офис технологий ветроэнергетики

Ветряные турбины работают по простому принципу: вместо того, чтобы использовать электричество для производства ветра, как вентилятор, ветряные турбины используют ветер для производства электроэнергии. Ветер вращает пропеллерные лопасти турбины вокруг ротора, который вращает генератор, вырабатывающий электричество.

Исследуйте ветряную турбину

Чтобы увидеть, как работает ветряная турбина, нажмите на изображение для демонстрации.

Типы ветряных турбин >

Размеры ветряных турбин >

Узнать больше >

Ветер — это форма солнечной энергии, вызванная комбинацией трех одновременных явлений:

  1. Солнце неравномерно нагревает атмосферу
  2. Неравномерность земная поверхность
  3. Вращение Земли.

Характер и скорость ветрового потока сильно различаются по всей территории Соединенных Штатов и зависят от водоемов, растительности и различий в рельефе. Люди используют этот поток ветра или энергию движения для многих целей: парусный спорт, запуск воздушного змея и даже производство электроэнергии.

Термины «энергия ветра» и «энергия ветра» описывают процесс, посредством которого ветер используется для выработки механической энергии или электричества. Эта механическая энергия может использоваться для определенных задач (таких как измельчение зерна или откачка воды), или генератор может преобразовывать эту механическую энергию в электричество.

Ветряная турбина преобразует энергию ветра в электричество, используя аэродинамическую силу лопастей ротора, которые работают как крыло самолета или лопасти винта вертолета. Когда ветер обдувает лопасть, давление воздуха на одной стороне лопасти уменьшается. Разница в давлении воздуха по обеим сторонам лопасти создает как подъемную силу, так и сопротивление. Подъемная сила больше, чем сопротивление, и это заставляет ротор вращаться. Ротор соединяется с генератором либо напрямую (если это турбина с прямым приводом), либо через вал и ряд шестерен (редуктор), которые ускоряют вращение и позволяют уменьшить физически размер генератора. Этот перевод аэродинамической силы во вращение генератора создает электричество.

Типы ветряных турбин

Большинство ветряных турбин подразделяются на два основных типа:

Турбины с горизонтальной осью

Деннис Шредер | NREL 25897

 

Ветряные турбины с горизонтальной осью — это то, что многие люди представляют себе, когда думают о ветряных турбинах.

Чаще всего они имеют три лопасти и работают «против ветра», при этом турбина вращается в верхней части башни, поэтому лопасти обращены к ветру.

Турбины с вертикальной осью

Майк ван Бавел | 42795

 

Ветряные турбины с вертикальной осью бывают нескольких разновидностей, в том числе модель Дарье в стиле взбивалки, названная в честь французского изобретателя.

Эти турбины всенаправленные, то есть их не нужно направлять на ветер для работы.

Ветряные турбины могут быть построены на суше или на море в больших водоемах, таких как океаны и озера. Министерство энергетики США в настоящее время финансирует проекты , чтобы облегчить развертывание морской ветроэнергетики в водах США.

Применение ветряных турбин

Современные ветряные турбины можно разделить на категории по месту их установки и способу подключения к сети:

Наземный ветер

WINDExchange

 

Мощность наземных ветряных турбин варьируется от 100 киловатт до нескольких мегаватт.

Более крупные ветряные турбины более эффективны с точки зрения затрат и сгруппированы в ветряные электростанции, которые обеспечивают большую мощность в электросети.

Морской ветер

Деннис Шредер | NREL 40484

 

Морские ветряные турбины, как правило, массивны и выше Статуи Свободы.

У них нет таких проблем с транспортировкой, как у наземных ветряных установок, поскольку крупные компоненты можно перевозить на кораблях, а не по дорогам.

Эти турбины способны улавливать мощные океанские ветры и генерировать огромное количество энергии.

Распределенный ветер

Когда ветряные турбины любого размера устанавливаются на «потребительской» стороне электросчетчика или устанавливаются в месте или рядом с местом, где будет использоваться производимая ими энергия, они называются «распределенным ветром».

Примус Ветроэнергетика | 44231

Многие турбины, используемые в распределенных приложениях, представляют собой небольшие ветряные турбины. Одиночные небольшие ветряные турбины мощностью менее 100 киловатт обычно используются в жилых, сельскохозяйственных, а также небольших коммерческих и промышленных целях.

Небольшие турбины могут использоваться в гибридных энергетических системах с другими распределенными энергоресурсами, например, в микросетях, питаемых от дизельных генераторов, аккумуляторов и фотогальваники.

Эти системы называются гибридными ветровыми системами и обычно используются в удаленных, автономных местах (где подключение к коммунальной сети недоступно) и становятся все более распространенными в приложениях, подключенных к сети, для обеспечения отказоустойчивости.

Узнайте больше о распределенном ветре из Distributed Wind Animation или прочитайте о том, что делает Управление технологий ветроэнергетики для поддержки развертывания распределенных ветровых систем для домов, предприятий, ферм и общественных ветровых проектов.

Узнать больше

Заинтересованы в энергии ветра? Справочник по малому ветру помогает домовладельцам, владельцам ранчо и малому бизнесу решить, подходит ли им энергия ветра.

Дополнительные ресурсы по энергии ветра можно найти на WINDExchange, где есть планы уроков, веб-сайты и видео для учащихся K-12, а также информация о проекте «Ветер для школ» и университетском конкурсе ветра.

Энергия 101: Производство чистой электроэнергии из ветра

Видео URL

В этом видеоролике рассказывается об основных принципах работы ветряных турбин и показано, как работают различные компоненты для улавливания и преобразования энергии ветра в электричество. См. текстовую версию.

Министерство энергетики США

History of U.S. Wind Energy

На протяжении всей истории использование энергии ветра то возрастало, то уменьшалось, от использования ветряных мельниц в прошлые века до высокотехнологичных ветряных турбин на ветряных электростанциях сегодня…

Учить больше

10 фактов о ветроэнергетике, которых вы не знали

Освежите свои знания о ветре! Получите подробную информацию о нескольких менее известных фактах об энергии ветра.

Учить больше

Кто использует распределенный ветер?

Существует множество различных типов клиентов распределенного ветра. Узнайте больше о распределенном ветре и о том, кто его использует.

Учить больше

Топ-10 вещей, которые вы не знали о распределенной энергии ветра

Узнайте об основных фактах, связанных с ветряными турбинами, используемыми в распределенных приложениях.

Учить больше

10 вещей, которые вы не знали об оффшорной ветроэнергетике

Узнайте больше об усилиях по разработке обширных оффшорных ветровых ресурсов Америки.

Учить больше

Узнайте больше о ветроэнергетике, посетив веб-страницу Управления технологий ветроэнергетики или просмотрев финансируемые Управлением мероприятия.

ветряная мельница | Определение, история, типы и факты

ветряная мельница

Все СМИ

Похожие темы:
ветряная турбина почтовая мельница башенная мельница ветряная электростанция Трехлопастной ветряк Джейкобса

Просмотреть весь связанный контент →

Резюме

Прочтите краткий обзор этой темы

Ветряная мельница Устройство для сбора энергии ветра с помощью парусов, закрепленных на вращающемся валу. Паруса установлены под углом или приданы небольшой закрутке, чтобы сила ветра против них разделялась на две составляющие, одна из которых в плоскости парусов сообщает вращение.

Подобно водяным колесам, ветряные мельницы были одними из первых двигателей, заменивших человека в качестве источника энергии. Использование ветряных мельниц становилось все более распространенным в Европе с 12 века до начала 19 века. Их медленный упадок из-за развития силы пара продолжался еще 100 лет. Их быстрый упадок начался после Первой мировой войны с развитием двигателя внутреннего сгорания и распространением электроэнергии; однако с тех пор производство электроэнергии с помощью энергии ветра служило предметом все большего количества экспериментов.

Britannica Quiz

История повседневных технологий в 68 вопросах викторины

Вы когда-нибудь хотели получить нехронологическую историю технологий, которые в ту или иную эпоху стали частью повседневного опыта? А вы хотели эту историю в виде викторины? Вам повезло! Проверьте свои знания. Пройдите этот тест.

Самые ранние известные упоминания о ветряных мельницах относятся к персидскому мельнику в 644 г. н.э. и к ветряным мельницам в Сейстане, Персия, в 915 г. н.э. , который имеет диаметрально противоположные друг другу отверстия для входа и выхода ветра. Каждая мельница приводит в движение одну пару камней напрямую, без использования шестерен, а конструкция унаследована от самых ранних водяных мельниц. Персидские мастера, взятые в плен войсками Чингисхана, были отправлены в Китай для обучения строительству ветряных мельниц; с тех пор их использование для орошения продолжается.

Вертикальная ветряная мельница с парусами на горизонтальной оси происходит непосредственно от римской водяной мельницы с ее прямоугольным приводом к камням через единственную пару шестерен. Самая ранняя форма вертикальной мельницы известна как столбовая мельница. Он имеет коробчатое тело, содержащее шестерни, жернова и механизмы, а также несущие паруса. Он установлен на хорошо опертой деревянной стойке, вставленной в горизонтальную балку на уровне второго этажа корпуса мельницы. На этом его можно повернуть так, чтобы паруса были обращены к ветру.

Следующая разработка заключалась в том, чтобы поместить камни и шестерни в стационарную башню. У него есть подвижный верх или колпак, который несет паруса и может поворачиваться на гусенице или бордюре на вершине башни. Самая ранняя известная иллюстрация башенной мельницы датируется примерно 1420 годом. И почтовые, и башенные мельницы можно было найти по всей Европе, а также они были построены поселенцами в Америке.

Для эффективной работы паруса ветряной мельницы должны быть обращены прямо к ветру, а на первых мельницах токарная обработка корпуса постмельницы или крышки башни-мельницы производилась вручную с помощью длинного вытягивающегося хвостового стержня. до земли. В 1745 году Эдмунд Ли в Англии изобрел автоматический веерохвост. Он состоит из набора из пяти-восьми лопастей меньшего размера, установленных на хвостовой стойке или лестнице почтовой мельницы под прямым углом к ​​парусам и соединенных зубчатой ​​​​передачей с колесами, движущимися по направляющей вокруг мельницы. Когда ветер меняет направление, он ударяется о боковые стороны лопастей, поворачивает их, а следовательно, и гусеничные колеса, которые поворачивают корпус мельницы до тех пор, пока паруса снова не станут перпендикулярны ветру. Веерообразный хвост также может быть прикреплен к крышкам башенных мельниц, спускаясь к зубчатой ​​рейке на бордюре.

Оформите подписку Britannica Premium и получите доступ к эксклюзивному контенту. Подписаться

Паруса мельницы установлены на оси или маховом валу, наклоненном вверх под углом от 5° до 15° к горизонтали. Первые мельничные паруса представляли собой деревянные рамы, на которых была расстелена парусина; каждый парус устанавливался индивидуально, когда мельница находилась в состоянии покоя. Ранние паруса представляли собой плоские плоскости, наклоненные под постоянным углом к ​​направлению вращения; позже они были построены с изгибом, как у пропеллера самолета.

В 1772 году шотландец Эндрю Мейкл изобрел свой рессорный парус, заменив откидные ставни, как у жалюзи, парусами и управляя ими с помощью соединительного стержня и пружины на каждом парусе. Каждую пружину нужно было регулировать индивидуально, когда мельница находилась в состоянии покоя, в соответствии с требуемой мощностью; тогда паруса были в определенных пределах саморегулирующимися.

В 1789 году Стивен Хупер в Англии использовал рулонные шторы вместо жалюзи и изобрел дистанционное управление, позволяющее регулировать все жалюзи одновременно во время работы мельницы. В 1807 году сэр Уильям Кубитт изобрел свой «патентный парус», сочетающий откидные ставни Мейкла с дистанционным управлением Хупера с помощью цепи с земли через стержень, проходящий через отверстие, просверленное в маховом валу; операция была сравнима с управлением зонтиком; за счет изменения веса, подвешенного на цепи, паруса стали саморегулирующимися.

Ветряной насос с кольцевым парусом был представлен в Соединенных Штатах Дэниелом Халлади в 1854 году, а его производство из стали Стюартом Перри в 1883 году привело к всемирному распространению, поскольку, хотя он был неэффективным, он был дешевым и надежным. Конструкция состоит из ряда небольших лопастей, расположенных радиально в колесе. Управление автоматическое: рысканием хвостовым оперением и крутящим моментом путем смещения колеса относительно вертикальной оси рыскания. Таким образом, по мере усиления ветра мельница поворачивается вокруг своей вертикальной оси, уменьшая эффективную площадь и, следовательно, скорость.

Наиболее важным применением ветряной мельницы было измельчение зерна. В некоторых районах его использование для осушения земель и перекачки воды было одинаково важным. Ветряная мельница использовалась в качестве источника электроэнергии со времен мельницы П. Ла Кура, построенной в Дании в 1890 году с патентованными парусами и двойными веерообразными хвостами на стальной башне. Интерес к использованию ветряных мельниц для производства электроэнергии как в индивидуальных, так и в коммерческих масштабах возродился в 1970-х годах.

Редакторы Британской энциклопедии Эта статья была недавно пересмотрена и обновлена ​​Адамом Августином.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *