Содержание

Принцип действия и устройство ветрогенератора (общие понятия)

В упрощенном виде принцип работы ветрогенератора можно представить следующим образом.

Сила ветра приводит в движение лопасти, которые через специальный привод заставляют вращаться ротор. Благодаря наличию статорной обмотки, механическая энергия превращается в электрический ток. Аэродинамические особенности винтов позволяют быстро крутить турбину генератора.

Принцип работы

Дальше сила вращения преобразуются в электричество, которое аккумулируется в батарее. Чем сильнее поток воздуха, тем быстрее крутятся лопасти, производя больше энергии. Поскольку работа ветрогенератора основана на максимальном использовании альтернативного источника энергии, одна сторона лопастей имеет закругленную форму, вторая – относительно ровная. Когда воздушный поток проходит по закругленной стороне, создается участок вакуума. Это засасывает лопасть, уводя её в сторону. При этом создается энергия, которая и заставляет раскручиваться лопасти.

Схема работы ветрогенератора: показан принцип преобразования энергии ветра и действия внутренних механизмов

Во время своих поворотов винты также вращают ось, соединённую с генераторным ротором. Когда двенадцать магнитиков, закреплённых на роторе, вращаются в статоре, создаётся переменный электрический ток, имеющий такую же частоту, как и в обычных комнатных розетках. Это основной принцип того, как работает ветрогенератор. Переменный ток легко вырабатывать и передавать на большие расстояния, но невозможно аккумулировать.

Принципиальная схема ветрогенератора

Для этого его нужно преобразовать в постоянный ток. Такую работу выполняет электронная цепь внутри турбины. Чтобы получить большое количество электроэнергии, изготавливаются промышленные установки. Ветровой парк обычно состоит из нескольких десятков установок. Благодаря использованию такого устройства дома, можно получить существенное снижение расходов на электроэнергию. Принцип действия ветрогенераторов позволяет применять их в таких вариантах:

  • для автономной работы;
  • параллельно с резервным аккумулятором;
  • вместе с солнечными батареями;
  • параллельно с дизельным или бензиновым генератором.

Если поток воздуха движется со скоростью 45 км/час, турбина вырабатывает 400 Вт электроэнергии. Этого хватает для освещения дачного участка. Данную мощность можно накапливать, собирая её в аккумуляторе.

Специальное устройство управляет зарядкой аккумуляторной батареи. По мере уменьшения заряда вращение лопастей замедляется. При полной разрядке батареи лопасти снова начинают вращаться. Таким способом зарядка поддерживается на определённом уровне. Чем сильнее воздушный поток, тем больше электроэнергии может произвести турбина.

Система торможения вращения лопастей

Чтобы установка не вышла из строя при сильном напоре воздуха, она снабжена специальной системой торможения. Если раньше движущиеся магниты индуцировали ток в обмотках, то теперь данная сила используется для остановки вращающихся магнитов. Для этого создается короткое замыкание, при котором замедляется движение ротора. Возникающее противодействие замедляет вращение магнитов.

Конструкция ветрогенератора и узлов

При ветре больше 50 км/час тормоза автоматически замедляют вращение ротора. Если скорость движения воздуха доходит до 80 км/час, тормозная система полностью останавливает лопасти. Все части турбины сконструированы так, чтобы максимально использовалась воздушная энергия. Когда ветер дует, лопасти вращаются, и генератор преобразует их движение в электричество. Совершая двойное преобразование энергии, турбина производит электричество из обычного перемещения воздушных масс.

Внешне ветрогенератор напоминает флюгер — направлен в ту сторону, откуда дует ветер

Данное устройство весьма полезно не только в каких-то экстремальных условиях, но и в обычной повседневной жизни. Довольно часто системы ветрогенераторов применяются на дачах или в тех населенных пунктах, где регулярно бывают перебои с подачей электроэнергии. Самостоятельно сделанный автономный источник электричества имеет такие преимущества:

  • установка экологически чистая;
  • отсутствует потребность её заправки топливом;
  • не накапливаются какие-либо отходы;
  • устройство работает очень тихо;
  • имеет большой срок эксплуатации.

Все ветрогенераторы работают по одинаковой схеме. Сначала полученное от давления ветра переменное напряжение преобразуется в постоянный ток. Благодаря этому заряжается аккумулятор. Затем инвертором снова производится переменный ток. Это нужно для того, чтобы светились лампочки; работал холодильник, телевизор и т. д. Благодаря аккумуляторной батарее, можно пользоваться электроприборами в безветренную погоду. Кроме того, во время сильных порывов ветра напряжение в сети остаётся стабильным.

Увеличение мощности установки

Конструкцию некоторых ветрогенераторов имеет ветровой датчик. Он собирает данные о направлении и скорости воздушного потока. Генератор ветряка не может выдать больше номинальной мощности, однако, в любое оборудование заложен запас он может составлять от 10-30% от расчетных. На этот «запас» рассчитывать не стоит, так как программно и конструктивно в ветрогенератор заложена защита от перегрузок.

Увеличить мощность ветроустановки можно с помощью системы резервирования электроэнергии на базе аккумуляторных батарей.

Выходная мощность (кВт) ветрогенератора определяется мощностью инвертора. Исходя из выдаваемых киловатт, можно определиться с максимальным количеством подключаемых электроприборов. Чтобы увеличить выходную мощность установки, необходимо параллельно подключить несколько инверторов.

Для трехфазных схемы электропитания необходимо установить по инвертору на каждую фазу.

Если мощности на фазе недостаточно, увеличивают количество инверторов, если это предусмотрено производителем. При отсутствии ветра продолжительность подачи электроэнергии прекращается. Генерации энергии не происходит, поэтому к ветрогенератору подключают накопители энергии, смотрите схему ниже.

Схема увеличения мощности и емкости ветрогенератора

Накопитель энергии состоит из связки инвертор-батарея. О батареях вы можете прочитать в этой рубрике, а о накопителях в этой. Увеличение ёмкости аккумуляторных батарей увеличивает запас хранимой энергии, но и длительность зарядки. Скорость зарядки аккумулятора зависит от мощности генератора и количества инверторов, которые тоже могут пропустить через себя только ту мощность, которая заложена производителем. Соответственно, скорость зарядки аккумуляторов зависит от пропускной способности инвертора и не зависит от мощности ветрогенератора.

Выбор ветрогенератора

Самые качественные ветряки производят в Германии, Франции и Дании. Эти страны делают ветровые установки для снабжения электричеством жилого частного сектора, фермерских хозяйств, школ, небольших торговых точек. В России из-за низкой стоимости электроэнергии и негласной монополии на продажу электроэнергии ветроустановки, солнечные панели и другие виды альтернативной энергии не сильно распространены.

Мобильный ветрогенератор подойдет для нефтепромышленности или монтажных бригад, которые ведут строительство в полях (прототип)

Но высокая стоимость подключения удаленных объектов от электросетей (есть до сих пор не электрифицированные деревни), хамство чиновников, длительные процедуры хождения и получения ТУ у монопольных компаний вынуждают собственников использовать альтернативную энергию своих объектов.

Прежде все вы должны понимать, что КПД ветровой установки составляет около 60%, есть зависимость от скорости ветра, и потребуется периодически проводить ТО. Если вы все-таки решили сделать выбор в пользу ветрогенератора, следует знать. Выбирать ветрогенератор нужно исходя из конкретных обстоятельств его применения. Существуют новые разработки и модели: с повышенным КПД, вертикальные, горизонтальные, ортогональные, безлопастные.

Подсчитывается активная и резистивная мощность всех потребителей энергии.

Для предприятий или частного дома эти данные могут быть в проекте или счетах за электроэнергию. Если вам необходимо обеспечить электроэнергией дачу выбирается модель ветроустановки на 1-3 кВт, инвертор нужно небольшой мощности и можно обойтись без аккумуляторных батарей. Принцип наличия дачной ветроустановки прост: есть ветер — есть электричество, нет ветра — работаем в огороде или по хозяйству. Простой ветрогенератор можно сделать самому, достаточно собрать необходимые материалы и соединить их вместе.

Для частного дома постоянного проживания, такой принцип не подойдет. При частом отсутствии ветра следует придать особое значение аккумулятору. Здесь нужна большая ёмкость. Однако, чтобы он быстрее заряжался, сам генератор электричества также должен быть большой мощности. То есть отдельные узлы установки тесно взаимосвязаны друг с другом. Более надежная комбинация — симбиоз с дизель-генератором и солнечными панелями. Это 100% гарантия наличия электричества в доме, но и более дорогая.

При наличии скважины вы будете полностью энергонезависимые от внешних сетей.

Сейчас большое распространение получили коммерческие ветровые установки. Получаемая с их помощью электроэнергия продается различным предприятиям, испытывающим недостаток в энергоснабжении. Обычно такие электростанции состоят из нескольких ветрогенераторов различной мощности. Вырабатываемое ими переменное напряжение в 380 вольт подается непосредственно в электросеть предприятия. Кроме того, ветрогенераторы могут использоваться для зарядки большого числа аккумуляторных батарей, с которых потом преобразованная в переменное напряжение энергия также подается в электрическую сеть.

Ветрогенераторы российского производства

В большинстве случаев владельцы предприятий ставят ветроустановки, солнечные панели и дизель-генераторы для нужд собственного производства. Получение разрешение на продажу электричества в России — это, скажем так, отдельная история. После проведения энергоаудита, высвобождаются мощности, например, путем замены ламп освещения на светодиодные. Подсчитывается срок окупаемости, при отсутствии бюджета можно разделить модернизацию на этапы.

Технологии развиваются. Создаются энергонезависимые дома, офисы, станции на земле и воде. Наша команда инженеров поможет вам с выбором, расчетом, проектом и монтажом оборудования. Готовы ответить на ваши вопросы в комментариях или через форму.

Принцип работы ветрогенератора и его комплектующие

Содержание раздела:

  1. Компоненты ветроустановки
  2. Комплектация наших ветроустановок
  3. Подбор ветряка
  4. Примеры подбора компонентов установки
  5. Схемы работы ветрогенератора

1. Компоненты ветроустановки

К основным компонентам системы, без которых работа ветряка невозможна, относят следующие элементы:

  1. Генератор – необходим для заряда аккумуляторных батарей. От его мощности зависит как быстро будут заряжаться ваши аккумуляторы. Генератор необходим для выработки переменного тока. Сила тока и напряжение генератора зависит от скорости и стабильности ветра.
  2. Лопасти – приводят в движение вал генератора благодаря кинетической энергии ветра.
  3. Мачта – обычно, чем выше мачта, тем стабильнее и сильнее сила ветра. Отсюда следует – чем выше мачта, тем больше выработка генератора. Мачты бывают разных форм и высот.

Список дополнительных необходимых компонентов:

  1. Контроллер – управляет многими процессами ветроустановки, такими, как поворот лопастей, заряд аккумуляторов, защитные функции и др. Он преобразовывает переменный ток, который вырабатывается генератором в постоянный для заряда аккумуляторных батарей.
  2. Аккумуляторные батареи – накапливают электроэнергию для использования в безветренные часы. Также они выравнивают и стабилизируют выходящее напряжение из генератора. Благодаря им вы получаете стабильное напряжение без перебоев даже при порывистом ветре. Питание вашего объекта идёт от аккумуляторных батарей.
  3. Анемоскоп и датчик направления ветра – отвечают за сбор данных о скорости и направлении ветра в установках средней и большой мощности.
  4. АВР – автоматический переключатель источника питания. Производит автоматическое переключение между несколькими источниками электропитания за промежуток в 0,5 секунды при исчезновении основного источника. Позволяет объединить ветроустановку, общественную электросеть, дизель-генератор и другие источники питания в единую автоматизированную систему. Внимание: АВР не позволяет работать сети одного объекта одновременно от двух разных источников питания!
  5. Инвертор – преобразовывает ток из постоянного, который накапливается в аккумуляторных батареях, в переменный, который потребляет большинство электроприборов.
  6. Инверторы бывают четырёх типов:
    1. Модифицированная синусоида – преобразовывает ток в переменный с напряжением 220В с модифицированной синусоидой (ещё одно название: квадратная синусоида). Пригоден только для оборудования, которое не чувствительно к качеству напряжения: освещение, обогрев, заряд устройств и т.п.
    2. Чистая синусоида — преобразовывает ток в переменный с напряжением 220В с чистой синусоидой. Пригоден для любого типа электроприборов: электродвигатели, медицинское оборудование и др.
    3. Трехфазный – преобразовывает ток в трехфазный с напряжением 380В. Можно использовать для трехфазного оборудования.
    4. Сетевой – в отличие от предыдущих типов позволяет системе работать без аккумуляторных батарей, но его можно использовать только для вывода электроэнергии в общественную электросеть. Их стоимость, обычно, в несколько раз превышает стоимость несетевых инверторов. Иногда они стоят дороже, чем все остальные компоненты ветроустановки вместе взятые.

2. Комплектация наших ветроустановок

В комплект наших ветроэнергетических установок входит:

  1. Турбина
  2. Мачта (не входит в комплект EuroWind 300L)
  3. Лопасти
  4. Крепления
  5. Тросы мачты
  6. Поворотный механизм (только с ветрогенераторами EuroWind 3 и старше)
  7. Контроллер
  8. Анемоскоп и датчик ветра (только с ветрогенераторами EuroWind 3 и старше)
  9. Хвост (только с ветрогенераторами EuroWind 2 и младше)

Аккумуляторы, инвертор и дополнительно оборудование подбираются индивидуально и в базовую комплектацию не входят. Независимо от комплектации ветрогенератор всегда автоматически позиционируется по ветру.


Комплектующие ветрогенератора EuroWind 10

3. Подбор ветряка

Первый вопрос, на который вы должны дать ответ и который поможет вам ответить на остальные вопросы: Для чего вам нужен ветрогенератор и какие задачи он должен выполнять?

Ответив на главный вопрос, вы можете без проблем ответить на остальные вопросы и решить какой набор оборудования вам необходим и сколько это будет стоить.

Итак, три основные величины, которые определяют работу всего комплекса:

  1. Выходная мощность ветроустановки (кВт), определяется только мощностью преобразователя (инвертора) и не зависит от скорости ветра, емкости аккумуляторов. Ещё её называют «пиковой нагрузкой». Этот параметр определяет максимальное количество электроприборов, которые могут быть одновременно подключены к вашей системе. Вы не сможете одновременно потреблять больше электроэнергии, чем позволяет мощность вашего инвертора. Если вы потребляете электроэнергию редко, но в больших количествах, то обратите внимание на более мощные инверторы. Для увеличения выходной мощности возможно одновременное подключение нескольких инверторов.
  2. Время непрерывной работы при отсутствии ветра или при слабом ветре определяется емкостью аккумуляторных батарей (Ач или кВт) и зависит от мощности и длительности потребления. Если вы потребляете электроэнергию редко, но в больших количествах, обратите внимание на аккумуляторы с большой емкостью.
  3. Скорость заряда аккумуляторных батарей (кВт/час) зависит от мощности самого генератора. Также этот показатель прямо зависит от скорости ветра, а косвенно от высоты мачты и рельефа местности. Чем мощнее ваше генератор, тем быстрее будут заряжаться аккумуляторные батареи, а это значит, что вы сможете быстрее потреблять электроэнергию из батарей и в больших объемах. Более мощный генератор следует брать в том случае, если ветра в месте установки слабые или вы потребляете электроэнергию постоянно, но в небольших количествах. Для увеличения скорости заряда аккумуляторов возможна установка нескольких генераторов одновременно и подключение их к одной аккумуляторной батарее.

Исходя из перечисленных выше факторов, для подбора ветрогенератора и сопровождающего оборудования вам необходимо ответить на три вопроса:

  1. Количество электроэнергии, необходимое вашему объекту ежемесячно (измеряется в киловаттах). Эти данные необходимы для подбора генератора. Их можно взять из коммунальных счетов на оплату электроэнергии или рассчитать самостоятельно, если объект находится в стадии строительства.
  2. Желаемое время автономной работы вашей энергосистемы в безветренные периоды или периоды, когда ваше потребление энергии из аккумуляторов будет превышать скорость зарядки аккумуляторных батарей генератором. Данный параметр определяет количество и емкость аккумуляторных батарей.
  3. Максимальная нагрузка на вашу сеть в пиковые моменты (измеряется в киловаттах). Необходимо для подбора инвертора переменного тока.

4. Примеры подбора компонентов установки

Рассмотрим несколько общих примеров подбора оборудования ветроустановки. Более точный расчёт может быть произведён нашими специалистами и включает в себя гораздо больше необходимых деталей.

Пример расчёта ветряка №1

Описание:

Частный дом в Киевской области находится в стадии строительства. По предварительным расчётам жильцы дома будут потреблять не больше 300 400 кВт электроэнергии ежемесячно. Затраты электроэнергии не очень высокие, т.к. хозяева будут использовать для отопления и нагрева воды твердотопливный котёл, а ветрогенератор необходим только для полного обеспечения бытовых приборов электроэнергией.

Хозяева проводят основную часть дня на работе, а пик потребления электроэнергии припадает на утренние и вечерние часы. В этот момент могут быть включены электроприборы суммарной мощностью до 4 киловатт.

Дом находится на возвышенности и есть открытое пространство вокруг будущего места установки ветрогенератора.

Общественной электросети нет.

Задача:

Полностью обеспечить 300-400 кВт электроэнергии ежемесячно с пиковыми нагрузками до 4 кВт.

Решение:
Генератор:

Чтобы понять как быстро должны заражаться аккумуляторы при расходе электроэнергии 400 кВт в месяц, мы должны разделить 400 кВт/мес на 30 дней (получим ежедневное потребление), а затем полученное число разделить на 24 часа (400/30/24 = 0,56 кВт/час – среднее ежечасное потребление). Скорость заряда аккумуляторных батарей генератором должна составить как минимум 560 Ватт в час.

В Киевской области низкая среднегодовая скорость ветра, но открытое пространство и возвышение объекта позволит ветрогенератору работать как минимум на 30-40% от номинальной мощности. Для более точных показателей можно произвести замер скорости ветра в месте установки.

Для того, чтобы обеспечить заряд аккумуляторных батарей генератором при этих условиях со скоростью 560 Ватт в час, нужно взять генератор, номинальная мощность которого будет как минимум в три раза больше необходимой, т.к. генератор будет работать всего на 30-35% от номинальной мощности (560Вт/ч*3=1680Вт/ч). Для этих нужд нам подходит генератор EuroWind 2 с номинальной мощностью 2000 Ватт.

Аккумуляторы:

Проводя 8-9 часов на работе в будние дни, хозяева отсутствуют, и энергопотребление их дома сведено к минимуму. В ночное время потребление также сведено к минимуму. Основное потребление происходит утром и вечером. Между этими основными пиками существует интервал в 8-9 часов.

При среднем уровне заряда аккумуляторных батарей 560 Вт/ч за интервал 8-9 часов ветровой генератор сможет выработать около 5000 Ватт. В ветреные дни этот показатель может увеличиться как минимум в два раза, поэтому за тот же период времени может быть выработано 10000 Ватт электроэнергии.

Генератор EuroWind 2 имеет напряжение 120 Вольт, поэтому ему необходимо 10 аккумуляторов с напряжением 12 Вольт (12В*10=120В). Одна аккумуляторная батарея 12В 100Ач способна сохранить до 1,2 кВт электроэнергии. Десять таких батарей могут сохранить до 12 кВт (1200Вт*10=12000Вт). Для запаса 10000 Ватт электроэнергии нам отлично подойдут 10 аккумуляторных батарей 12В с емкостью 100Ач.

Инвертор:

Для максимального потребления электроэнергии в пиковые моменты до 4 кВт, можно установить инвертор 5 кВА. Он сможет обеспечить постоянную нагрузку 4 кВт и пусковые токи до 6 кВт (150% нагрузка). Таблицу совместимости инверторов вы найдёте в разделе Инверторы.

Дополнительное оборудование:

АВР в данном случае не нужен, т.к. нет основной сети, а коммутацию с дизельным генератором (или бензиновым) можно производить посредством перекидного рубильника.

А вот дизельный генератор на 5 кВт в нашем случае не помешает – его можно использовать как резервное питание при полном отсутствии ветра.

ИТОГО:

Для полного энергообеспечения объекта нам необходим генератор EuroWind 2, 10 аккумуляторных батарей 12В с емкостью 100Ач, инвертор 5 кВА, дизельная электростанция на 5 кВт.


Пример расчёта ветряка №2

Описание:

Небольшой отель на 8 номеров вместе с рестораном расположены на трассе в открытом поле. Среднегодовая скорость ветра в месте установки была замерена предварительно и составляет 6,8 м/с. Расходы электроэнергии на бытовые приборы и освещение составляют 60 кВт на один номер в месяц и около 2500 кВт в месяц на ресторан. Ресторан и отель обогреваются, кондиционируются и круглый год обеспечивают себя горячей водой с помощью трехфазного геотермального теплонасоса инверторного типа мощностью 14 кВт. Потребление электроэнергии данного теплонасоса составляет 3,5 кВт/час, а пусковые токи — всего 2,8 кВт.

В ресторане и отеле используются энергосберегающие лампы для освещения. Пиковая нагрузка при использовании электроприборов и освещения объекта составляет около 7,5 кВт (не считая 3,5 кВт теплонасоса).

Есть общественная электросеть, но она не может обеспечить потребности, т.к. выделена линия мощностью только 4 кВт. Большую мощность не может обеспечить местная подстанция.

Задача:

Полное обеспечение объекта независимой электроэнергией, отоплением и резервным питанием от основной сети.

Решение:
Генератор:

Ежемесячный расход электроэнергии на содержание номеров составит 60 кВт * 8 номеров = 480 кВт в месяц. Общий расход электроэнергии на содержание отеля и ресторана без учёта отопления составит 2980 кВт в месяц (480 кВт + 2500 кВт = 2980 кВт). Отсюда следует, что среднее ежечасное потребление на все электроприборы и освещение без учёта обогрева составит 4,14 кВт/час (2980 кВт / 30 дней / 24 часа = 4,14 кВт/час). К этому числу необходимо прибавить 3,5 кВт/час, которые будет потреблять теплонасос. В итоге мы получаем, что генератор должен обеспечивать нас как минимум 7,64 киловаттами электроэнергии ежечасно (4,14 кВт/час + 3,5 кВт/час = 7,64 кВт/час).

Среднегодовая скорость ветра 6,8 м/с позволяет генератору работать как минимум на 40% от номинальной мощности. Отсюда следует, что номинальная мощность генератора должна составлять как минимум 19,1 кВт/час (7,64 кВт/час / 40% = 19,1 кВт/час)

Для этих целей отлично подошёл бы генератор EuroWind 20, но он рассчитан на более высокие средние скорости ветра, как и другие мощные генераторы (EuroWind 15, 20, 30, 50). Поэтому мы отдадим предпочтение двум генераторам EuroWind 10, которые будут работать в одной системе, вместо одного генератора EuroWind 20. Тем более, что свободное место для установки ветрогенератора в данном случае не критично – есть свободная площадь вокруг отеля и ресторана.

Аккумуляторы:

В этом комплексе практически отсутствуют большие перерывы в использовании электроэнергии, а постоянные ветра поддерживают равномерный уровень заряда аккумуляторов.

В этом случае необходимы аккумуляторы, которые будут являться своеобразным «буфером» между генератором и инвертором. Их главная задача будет состоять в стабилизации и выпрямлении напряжения, а не накоплении электроэнергии.

Генератор EuroWind 10 имеет напряжение 240 Вольт, поэтому ему необходимо 20 аккумуляторов с напряжением 12 Вольт (12В*20=240В). Одна аккумуляторная батарея 12В 150Ач способна сохранить до 1,8 кВт электроэнергии. Двадцать таких батарей могут сохранить до 36 кВт (1800Вт*20=36000Вт). Запаса электроэнергии в 36 кВт должно хватить всему комплексу почти на 5 часов непрерывной работы при средней нагрузке при полном отсутствии ветра. Для этого нам подойдут 20 аккумуляторных батарей 12В с емкостью 150Ач.

Инвертор:

Для максимального потребления электроэнергии в пиковые моменты до 7,5 кВт, можно установить инвертор 10 кВА. Он сможет обеспечить постоянную нагрузку 8 кВт и пусковые токи до 12 кВт (150% нагрузка).

А для обеспечения теплонасоса мощностью 3,5 кВт нам необходим трехфазный инвертор, т.к. этот теплонасос требует трехфазный ток с напряжением 380В. В этом случае возьмём ещё один инвертор – трехфазный 5 кВА, который обеспечит нас напряжением 380В и постоянной мощностью 4 кВт.

Дополнительное оборудование:

Можно установить АВР, который будет автоматически переключать питание отеля и ресторана с ветрогенератора на общественную электросеть в случае полного безветрия и разряда аккумуляторных батарей. Среднее потребление отеля и ресторана (4,14 кВт) практически равно мощности общественной линии электропередач, которая была выделена объекту (4 кВт), поэтому резервное питание будет обеспечено.

Для резервного обеспечения теплового насоса можно установить трехфазную бензиновую или дизельную электростанцию мощностью 3,5 4 кВт, т.к. общественная электросеть не сможет обеспечить трехфазный ток для резервного питания теплонасоса.

ИТОГО:

Для полного энергообеспечения этого объекта нам необходимы два генератор EuroWind 10, 20 аккумуляторных батарей 12В с емкостью 150Ач, однофазный инвертор 10 кВА, трехфазный инвертор 5 кВА, АВР, бензиновая или дизельная электростанция на 3,5-4 кВт.

5. Схемы работы ветрогенератора

Приводим несколько популярных схем работы ветрогенераторных систем с потребителем. Это всего лишь некоторые примеры, поэтому возможны и другие схемы работы. В каждом случае составляется индивидуальный проект, который способен решить поставленную перед нами задачу.


Автономное обеспечение объекта (с аккумуляторами).
Объект питается только от ветроэнергетической установки.


Ветрогенератор (с аккумуляторами) и коммутация с сетью.
АВР позволяет переключить питание объекта при отсутствии ветра и полном разряде аккумуляторов на электросеть. Эта же схема может использоваться и наоборот – ветрогенератор, как резервный источник питания. В этом случае АВР переключает вас на аккумуляторные батареи ветрогенератора при потери питания от электросети.


Ветрогенератор (с аккумуляторами) и резервный дизель-(бензо-)генератор.
В случае отсутствия ветра и разряде аккумуляторных батарей происходит автоматический запуск резервного генератора.


Ветрогенератор (без аккумуляторов) и коммутация с сетью.
Общественная электросеть используется вместо аккумуляторных батарей – в неё уходит вся выработанная электроэнергия и из неё потребляется. Вы платите только за разницу между выработанной и потреблённой электроэнергией. Такая схема работы пока-что не разрешена в Украине и во многих других странах.


Гибридная автономная система – солнце-ветер
Возможно подключение солнечных фотомодулей к ветрогенераторной системе через гибридный контроллер или с помощью отдельного контроллера для солнечных систем.


Увеличение производительности системы.
Возможно установить два и более генератора, инвертора и комплекта аккумуляторов для увеличения мощности системы.

Также возможны другие схемы работы и коммутации ветрогенераторов.

Устройство и принцип работы ветрогенератора

Как устроен ветрогенератор

Любой ветрогенератор состоит из таких компонентов как;

– генератор, который вырабатывает переменный ток, и в дальнейшем преобразуется в постоянное напряжение, предназначенное для зарядки аккумуляторов. От скорости ветра зависит и мощность генератора;- лопасти, предназначены для передачи вращения к валу генератора через редукторы и стабилизаторы скорости вращения ротора генератора;
– мачта ветряка должна иметь достаточную высоту. Чем выше находятся лопасти, тем больше они получат энергии ветра.

Также в устройство ветрогенератора входят;

– контроллер, необходимый для преобразования переменного напряжения идущего с генератора, в постоянное напряжение и последующей зарядкой аккумуляторов. Контроллер управляет поворотом лопастей, и контролируют направление ветра;
– аккумуляторы накапливают электроэнергию, чтобы использовать ее при небольшом ветре или его отсутствии. Батарея также хорошо стабилизирует электроэнергию, полученную от генератора;
– датчик направления ветра помогает лопастям «поймать» ветер;
– АВР представляет собой устройство автоматического переключения между ветрогенератором и другими источниками электроэнергии, например электросетью, генератором, солнечными панелями;
– инвертор предназначен для преобразования постоянного тока, поступающего с аккумуляторов, в переменное напряжение для домашней электросети. Инверторы могут разделяться по типу синусоиды для разных потребителей электроэнергии.

Устройство ветрогенератора
  1. Инвертор модифицированной синусоиды на выходе выдает квадратную синусоиду, предназначенную для не требовательных потребителей к качеству сети – это тэны, накальные лампы освещения.
  2. Инверторы с чистой синусоидой по качеству выходного напряжения подходят даже для самых требовательных потребителей электроэнергии.
  3. Инверторы трехфазного напряжения предназначены для трехфазных сетей.
  4. Сетевой инвертор работает без аккумулятора и способен к выводу электроэнергии в общую сеть.

Принцип действия ветрогенератора

Принцип работы ветрогенератора построен на преобразовании кинетической энергии силы ветра в энергию вращения вала генератора. Для вертикальных ветрогенераторов, вертикальная ось соединена с вертикальным ротором. Генератор и ротор расположены внизу конструкции. Лопасти закреплены в вертикальной оси.

Вращаясь, лопасти заставляют вращаться ротор генератора, который начинает вырабатывать переменный и нестабильный ток. Это ток идет на контроллер, который преобразует его в постоянное напряжение и заряжает аккумуляторы. С аккумулятора питание идет на инвертор, назначение которого превращение постоянного тока в переменное напряжением 220 В или 380 В, которое поступает к потребителям электроэнергии.

Схемы работы ветрогенераторов

Вариантов работы ветрогенератора может быть несколько:

  1. Автономная работа ветрогенератора.
Автономная работа ветрогенератора
  1. Такая совместная работа считается очень надежным и эффективным способом автономного электроснабжения. При отсутствии ветра, работают солнечные батареи. Ночью, когда не работают солнечные батареи, аккумулятор заряжается от ветровой установки.
Параллельная работа ветрогенератора с солнечными панелями
  1. Ветрогенератор также может работать параллельно с электросетью. При избытке электроэнергии, она поступает в общую сеть, а при недостатке ее потребители электроэнергии работают от общей электросети.
Параллельная работа ветрогенератора с электросетью

Ветряные генераторы могут прекрасно работать с любыми видом автономного электроснабжения и общей электросетью. Создавая при этом единую систему энергоснабжения.

Принцип работы ветрогенератора — видео и обзор.

Выходная мощность ветровых электростанций может достигать 3000 Вт и более.
Данные установки идеальны для применения в отдаленных районах. Их используют для электроснабжения дачных домиков, туристических лагерей, домов отдыха, парусных лодок и других сооружений.

Ветрогенераторы можно использовать для питания небольших бытовых приборов и электроинструментов, а также для зарядки аккумуляторов. Почти на каждой ферме в отдаленных районах вы можете встретить ветровую установку. Их обычно строят в районах, где преобладает ветреная погода.

Ветровые электростанции не оказывают вредного влияния на экологию, являются экономически выгодным вложением и надежными для электроснабжения различных объектов. Главное достоинство ветряных установок – использование неисчерпаемого источника энергии. Не секрет, что принцип работы ветрогенератора заключается в преобразовании кинетической энергии ветра в электрическую.

Этот способ выработки электричества не приводит к образованию побочных продуктов, и, следовательно, к загрязнению окружающей среды. Также, вам не придется тратиться на топливо, так как вращения их подвижной части обеспечивается ветром.

Как работает турбина ветрогенератора?

Принцип работы ветрогенератора подобен функционированию турбин самолета. Отличие лишь в том, что лопасти ветряка вращаются на месте под воздействием порывов ветра. Ввиду своего гигантского размера, они эффективно поглощают энергию ветра, которая затем преобразуется в электричество.

Лопасти винта имеют специальную форму, позволяющую им с легкостью реагировать на движение воздушных масс. Потоки проходящего воздуха заставляют винт вращаться, причем вам может показаться, что скорость вращения довольно мала. Но затем, с помощью передаточных механизмов, вращение винта приводит в движение шестерни меньшего размера, скорость которых уже заметно выше.

Данные приспособления разгоняют вал привода до частоты оборотов, достаточной для успешного завершения преобразования энергии ветра в электричество.

Для получения наибольшей электрической мощности на выходе генератора, винты ветряков устанавливаются на максимально возможной высоте. Лопасти винтов обычно достигают 70 м. или 230 футов в диаметре, что в 30 раз превышает размах крыльев орла.

Большой размер и охват лопастей делает возможным многократное преумножение силы ветра. Поэтому, даже легкий порыв, захваченный внешний краем винта, может привести последний в движение.

Видео: принцип работы ветрогенератора (ветряка)

Плюсы и минусы ветрогенераторов

Преимущества ветряков

Прежде чем приобрести подобный генератор, требуется взвесить все плюсы и минусы покупки. Достоинств у данных устройств больше, чем недостатков.

  • Основным преимуществом является их безопасность с точки зрения экологии. Это возможно благодаря тому, что использование энергии ветра не ведет к образованию побочных продуктов и выхлопных газов. Данные вещества обычно образуются при сжигании топлива и выбрасываются в атмосферу, нанося непоправимый вред здоровью людей и животных, проживающих в близлежащих районах.
  • Еще одним аргументом в пользу данных установок является то, что вам не придётся платить за топливо. То есть, все затраты связаны только с приобретением генератора. Это немалые затраты, но они в скором времени окупаются, ведь вам больше не нужно платить за потребляемую из сети электроэнергию.

Недостатки ветрогенераторов

  • Основным недостатком ветрогенераторов является то, что этим возобновляемым источником невозможно управлять как многими современными ресурсами. Поэтому, количество вырабатываемой электроэнергии каждый день может быть различным. Если же энергии от ветряка вам недостаточно, то вы вынуждены использовать резервный источник питания, работающий на ископаемом топливе.
  • Кроме того, ветровые установки занимают довольно большую площадь, причем для достижения необходимого эффекта они должны быть размещены на возвышенности.
  • Прежде чем приобрести ветрогенераторы, обязательно согласуйте это с вашими соседями. Это необходимо, так как работа этих устройств может сопровождаться телевизионными помехами и высоким уровнем шума.
  • Также, известны случаи обращения за медицинской помощью людей, проживающих вблизи рассматриваемых установок. Это заболевание получило название «синдром ветровых турбин». Человек, страдающий этим синдромом, испытывает частые головные боли и другие недомогания, связанные с длительным воздействием низкочастотных вибраций и шумов.
  • Довольно неприятным фактором также является и то, что множество птиц и летучих мышей часто погибает при столкновении с лопастями винтов генераторов.

принцип работы и получения энергии

Приводим несколько популярных схем работы ветрогенераторных систем с потребителем. Это всего лишь некоторые примеры, поэтому возможны и другие схемы работы. В каждом случае мы составляем индивидуальный проект, который способен решить поставленную перед нами задачу.

Автономное обеспечение объекта (с аккумуляторами)

Объект питается только от ветряной электростанции.

Ветрогенератор (с аккумуляторами) и коммутация с сетью

АВР позволяет переключить питание объекта при отсутствии ветра или в случае полной разрядки аккумуляторов на электросеть. Эта же схема может использоваться и наоборот – ветрогенератор, как резервный источник питания. В этом случае АВР переключает вас на аккумуляторные батареи ветрогенератора при потери питания от электросети.

Ветрогенератор (с аккумуляторами) и резервный дизель-(бензо-)генератор

В случае отсутствия ветра и разряде аккумуляторных батарей происходит автоматический запуск резервного генератора, работающего на бензине или солярке.

Ветрогенератор (без аккумуляторов) и коммутация с сетью

Общественная электросеть используется вместо аккумуляторных батарей – в неё уходит вся выработанная электроэнергия ветряком и из неё же потребляется. Вы платите только за разницу между выработанной и потреблённой электроэнергией из сети. Такая схема работы пока-что не разрешена в Украине и во многих других странах.

Гибридная автономная система – солнце-ветер

Возможно подключение солнечных фотомодулей к ветровой электростанции через гибридный контроллер или с помощью отдельного контроллера для солнечных систем.

Увеличение производительности системы

Возможно установить два и более генератора, инвертора и комплекта аккумуляторов для увеличения общей мощности системы.

Также возможны другие схемы работы и коммутации ветрогенераторов.

Ветрогенератор — как выбрать ветряк

С целью экономии расходов на электроснабжение на производствах и в частных домах устанавливают ветрогенераторы. В данной статье рассмотрим основные характеристики, разновидности и принцип работы ветрогенераторов.

Оглавление:

  1. Устройство и принцип работы ветрогенератора
  2. Разновидности ветряков
  3. Рекомендации по выбору ветрогенератора
  4. Обзор производителей ветрогенераторов

Устройство и принцип работы ветрогенератора

Основные составляющие ветрогенератора:

1. Генератор — преобразователь механической энергии в электрическую. Генератор заряжает аккумуляторные батареи. Чем выше скорость ветра, тем быстрее заряжаются батареи.

2. Лопасти ветрогенератора — часть ветрогенератора, которая подвергается силе ветра, а затем воздействует на генераторный вал.

3. Мачта — устройство на котором крепится генератор и лопасти. От высоты мачты зависит скорость и устойчивость работы ветрогенератора.

Дополнительные компоненты ветрогенератора:

1. Контроллеры — устройство управления ветрогенератором, отвечающее за направление лопастей, особенности заряда аккумулятора, защиту ветрогенератора. Основной функцией контроллера является преобразование переменной энергии в электрическую постоянную.

2. Батареи аккумулятора — приборы для накапливания энергии, которую используют в то время когда отсутствует ветер. Еще одной функцией аккумулятора выступает выравнивание и стабилизация энергии, вырабатываемой генератором. Аккумуляторные батареи обеспечивают электропитание.

3. Анемоскопы или устройства измерения направления ветра — собирают и обрабатывают данные о скорости, направлении и порывах ветра. Анемоскопы устанавливают на более мощных ветрогенераторах, предназначенных для переработки большого количества энергии.

4. Автоматические регуляторы питания предназначены для объединения ветрогенератора, электросети, дизельного генератора или других источников энергии.

5. Инверторы — устройства для переработки постоянного тока в переменный, предназначенный для работы бытовой и электротехники.

При попадании ветра на лопасти ветрогенератора происходит вращение устройства. Во время работы ветрогенератора вырабатывается переменный ток, который попадает в контроллер и перерабатывается в постоянный. Постоянный ток заряжает аккумуляторы, которые обеспечивают электричеством частный дом или большое предприятие. Но, для работы большинства электроприборов необходим переменный однофазный или трехфазный ток, который образуется в инверторе.

Варианты использования ветрогенератора в системе электроснабжения:

  • работа ветряка с аккумулятором в автономном режиме;
  • параллельная работа ветрогенератора на аккумуляторах и солнечных батареях;
  • работа ветрогенератора с параллельным использованием резервного (дизельного, бензинового или газового) генератора;
  • параллельная работа ветрогенератора и обычной электросети.

Преимущества использования ветрогенератора:

  • получение экологически чистой, безопасной и надежной электроэнергии,
  • снижение расходов оплаты за электричество;
  • бесшумность работы устройства;

  • наибольшее количество энергии ветрогенератор производит осенью или зимой, во время большей востребованности электричества для обогрева помещений;
  • цена на ветрогенераторы намного ниже, чем стоимость альтернативных источников получения электроэнергии;
  • возможность ветрогенератора параллельно работать с другими источниками электроэнергии;
  • возможность выбора мощности ветроустановки, в зависимости от типа местности и количества необходимой электроэнергии;
  • возможность использования ветрогенераторов на яхтах или кораблях;
  • потратившись один раз на ветроустановку, обеспечивается электроснабжение минимум на 20 лет.

Разновидности ветряков

В зависимости от размещения турбин выделяют ветрогенераторы:

  • вертикального типа,
  • горизонтального типа.

Ветрогенератор вертикального типа имеет вертикально размещенную турбину, по отношению к поверхности земли, а горизонтальный наоборот. Вертикальный ветрогенератор легко улавливает самые малейшие дуновения ветерка, а горизонтальный — более мощный, по преобразованию энергии.

Разновидности вертикальных ветрогенераторов:

1. Изобретение вертикального ветрогенератора принадлежит шведскому изобретателю Савониусу. Вертикальный ветряк состоит из двух цилиндров, которые имеют вертикальную ось вращения. Независимости от силы и направления ветра вертикальный ветряк постоянно вращается вокруг своей оси. Основным недостатком вертикального ветрогенератора является неполное использование ветровой энергии. Во время исследований было выявлено, что вертикальный ветряк использует только третью часть ветровой энергии.

2. Вертикальный ветряк с наличием ротора Дарье был изобретен на несколько десятков лет позже обычного. Роторный ветрогенератор имеет две или три лопасти и ротор. Ветрогенераторы с ротором просты в изготовлении и легки в монтаже. Главным недостатком такого ветрогенератора является то, что ротор нужно запускать вручную.

3. Ветрогенератор с вертикальной осью вращения и с наличием геликоидного ротора — имеет закрученные лопасти. которые обеспечивают равномерное вращение ветрогенератора. Преимущество: уменьшение нагрузки на подшипники, тем самым увеличение срока службы устройства. Недостатки: высокая стоимость, сложность монтажа.

4. Вертикальный ветрогенератор с наличием многопластного ротора — самое эффективное устройство по переработке ветровой энергии. Имеет сложный ротор, который состоит из большого количества лопастей.

5. Ортогональные ветрогенераторы не требуют большой скорости ветра. Для работы такого устройства подойдет скорость ветра от 0,7 м/с. Ортогональные вертикальные ветроустановки имеют высокие технические характеристики, бесшумное вращение мотора и интересный дизайн. Устройство ортогонального ветрогенератора основывается на вертикальной оси вращения и на нескольких лопастях, которые удалены от оси на определенном расстоянии. Несмотря на большое количество преимуществ, ортогональная ветроустановка имеет недостатки:

  • небольшой строк службы опорных узлов;
  • лопасти более массивные, чем у обычных ветрогенераторов;
  • большой вес установки затрудняет монтаж устройства.

Горизонтальные ветрогенераторы имеют более высокий коэффициент полезного действия. Главным недостатком горизонтальных ветрогенераторов является необходимость в постоянном поиске ветра при помощи флюгеля, который устанавливается отдельно от устройства.

Горизонтальные ветрогенераторы разделяют на:

  • устройства однолопастного типа — характеризуются высокими оборотами вращения, имеют небольшой вес и легкую конструкцию;
  • ветрогенераторы двухлопастного типа — по устройству схожи с однолопастными, только отличаются количеством лопастей;
  • ветряки трехлопастного типа имеют наибольшую мощность около 7 мВт, считаются одними из самых популярных среди ветрогенераторов, предназначенных для дома;
  • многолопастные ветрогенераторы имеют от четырех до пятидесяти лопастей, данные устройства используют для обеспечения работы водяных установок.

В соотношении с количеством лопастей все ветрогенераторы подразделяются на:

  • однолопастные,
  • двухлопастные,
  • трехлопастные,
  • многолопастные.

По материалам, из которых состоит ветрогенераторная установка выделяют:

  • ветрогенераторы парусного типа,
  • ветрогенераторы жесткого типа, изготовлены из стекловолокна или металла.

В зависимости от шагового признака винта ветрогенераторы разделяют на:

  • устройства измеряемого шага,
  • устройства фиксированного шага.

Ветрогенератор на основе изменяемого шага имеет довольно сложную конструкцию, но в то же время увеличенную скорость вращения. Ветрогенератор с фиксированный шагом отличается надежностью и простотой.

Все ветрогенераторы условно разделяют на два вида:

  • ветрогенераторы промышленного типа;
  • домашние ветрогенераторы.

Промышленные ветряки используют для получения большого количества электроэнергии. Для устройства ветрового парка, состоящего из нескольких десятков или сотен ветрогенераторов требуется тщательное обследование местности, которое проводят на протяжении года или двух. Промышленные ветрогенераторы позволяют получать электроэнергию для обеспечения электричеством нескольких десятков домов или определенного производства.

Ветрогенератор для дома — позволяет значительно снизить расходы на электроснабжение и обеспечивает независимость от работы общей электросети.

Рекомендации по выбору ветрогенератора

1. Перед выбором ветрогенератора следует определиться с мощностью и функциональным назначением данного устройства.

2. Внимательно изучите разновидности ветряков и ознакомьтесь с климатическими условиями данного региона, в котором планируется установка ветрогенератора.

3. Определите выходную мощность ветряка, которая напрямую зависит от мощности преобразователя (инвертора). Второе название выходной мощности — пиковая нагрузка — совокупность количества приборов, которые одновременно будут работать с ветрогенератором. То есть, выходная мощность определяется как общая мощность ветряка. Даже при редком, но большом потреблении электроэнергии следует выбирать ветрогенератор с большой мощностью. Чтобы увеличить выходную мощность, следует установить несколько инверторов.

4. Время на непрерывную работу устройства — определяют мощностью аккумулятором, которые устанавливаются на ветряк. При безветренной погоде аккумуляторы обеспечивают помещение электричеством.

5. Темпы заряда аккумулятора определяются мощностью устройства, скоростью ветра, высотой установки и рельефом территории, на которой установлен ветрогенератор. Чем выше мощность ветрогенератора, тем быстрее происходит заряд батарей. При постоянном потреблении электроэнергии или при слабом ветре выбирайте более мощные модели ветряков. Чтобы увеличить скорость заряда батарей, следует подключить несколько генераторов к ветроустановке.

6. Не следует покупать много аккумуляторных батарей, при слабой силе ветра, так как ветрогенератор не успеет заряжать все батареи. Если батареи не до конца заряжаются это приводит к быстрому выходу их строя, поэтому количество батарей следует рассчитывать из потребляемой мощности всех электроприборов в доме.

7. Чтобы ветряк купить, следует обратить внимание на главный фактор — вырабатываемую энергию устройства. Этот критерий указан в технических характеристиках ветрогенератора.

8. Чтобы определить потребляемую мощность дома, в котором будет производиться установка ветряка, следует просмотреть счета за электричество за последние 12 месяцев, и вывести минимальный, средний и максимальный коэффициент потребления энергии.

9. С помощью исследований ближайшей метеорологической станции, узнайте о среднегодовой скорости ветра на предполагаемом участке установки ветряка. Оптимальная работа ветрогенератора обеспечивается при ветре 5 м/с.

10. Лучше устанавливать ветрогенератор как дополнительный источник питания в паре с дизельным или бензиновым генератором.

11. Испытайте ветрогенератор в работе, обратите внимание на уровень шума и необходимость в техническом обслуживании ветряка. Некоторые мощные ветрогенераторы имеют достаточно высокий уровень шума, что приводит к дискомфорту и проблемам с соседями.

12. Средний срок эксплуатации ветрогенератора составляет шесть-семь лет.

13. Лучше отдать предпочтение ветрогенератору, лопасти которого изготовлены из твердых материалов: стекловолокна или металла.

14. Обратите внимание на оптимальную работу ветрогенератора при средней скорости ветра, которая характерна для данного региона.

15. Безредукторные ветрогенераторы намного проще в установке, легко собираются и не требуют дополнительного техобслуживания, в то время как редукторные несмотря на сложность монтажа обеспечивает большую мощность и лучшее качество работы ветряка.

16. Не следует обращать внимание на такие рекламные лозунги о том, что ветрогенератор имеет улучшенную конструкцию, магнитную левитацию или большой контроллер, в большинстве случаи такая реклама, направлена на то, чтобы за обычный ветрогенератор получить больше денег.

17. При покупке ветрогенератора, потребуйте гарантию и выполнение всех обязательств производителя ветрогенераторов перед покупателем. Например, наличие креплений — комплект ветрогенератора, который включает все комплектующие: инверторы, генераторы, аккумуляторы. При покупке данных устройств у разных производителей, риск неправильной работы ветрогенератора увеличивается.

18. Формула расчета мощности ветрогенератора: Р = 0,5 * rho * S * Ср * V3 * ng * nb. Р — мощность ветрогенератора, rho — величина обозначения плотности воздуха, S — величина площади метания ротора, Ср — коэффициент аэродинамического действия, V — величина скорости ветра, ng — радиаторный коэффициент полезного действия, nb — при наличии редуктора. КПД редуктора.

19. Стоимость ветрогенератора напрямую зависит от таких факторов:

  • количество лопастей,
  • мощность аккумуляторов,
  • мощность генератора,
  • количество инверторов,
  • материал изготовления лопастей,
  • наличие редуктора,
  • номинальная мощность ветряка,
  • тип ветрогенератора: горизонтальный, вертикальный,
  • материал, из которого изготовлена установка,
  • наличие дополнительных комплектующих.

Обзор производителей ветрогенераторов

Чтобы ветрогенератор купить, нужно предварительно рассчитать мощность ветрогенератора и потребляемое электричество. После проведения расчетов обратите внимание на стоимость ветряка.

Первые позиции по производству ветрогенераторов занимает Германия, Дания и Франция. Несколько десятков лет назад началось изготовление российских ветрогенераторов, которые, по сравнению с зарубежными моделями, требуют усовершенствования.

Рассмотрим основных популярных производителей ветрогенератовор для дома:

1. AEOLOS (Дания)

Особенности ветрогенераторов AEOLOS:

  • компания занимается разработкой ветрогенераторов более 35 лет;
  • мощность вертикальных ветрогенераторов составляет от 500 Вт до 500 кВт;
  • мощность горизонтальных ветряков — 300-10000 Вт;
  • сфера применения ветрогенераторов: частный сектор, фермерское хозяйство, обеспечение электричеством поселков и школ;
  • высокий уровень выработки электроэнергии;
  • использование генератора без редуктора обеспечивает высокий уровень надежности ветроустановки;
  • небольшая стоимость технического обслуживания;
  • высокий уровень безопасности обеспечивает функция контроля положения устройства ветрогенератора;
  • наличие электронной системы торможения.

Технические характеристики AEOLOS Н 1кВт:

  • величина номинальной мощности: 1 кВт;
  • величина максимальной мощности: 1,5 кВт;
  • выходное напряжение: 48 В;
  • характеристика лопастей: 3 штуки, материал — стекловолокно;
  • особенности генератора: генератор трехфазного магнитноэлектрического типа, который обеспечивает постоянный ток;
  • коэффициент полезного действия: менее 0,95;
  • гарантийный строк: 5лет;
  • максимальный строк эксплуатации: 20 лет.

2. ENERCON (Германия)

Особенности:

  • мощность ветрогенераторов компании ENERCON от 330 Вт до 7,58 мВт;
  • наличие кольцевого генератора;
  • отсутствие трансмиссии;
  • выполнение мировых стандартов качества: надежность и долговечность.

Технические особенности ENERCON Е80:

  • величина номинальной мощности: 80 кВт;
  • величина высоты башни: 53 м;
  • величина номинальной скорости ветра: 12 м/с;
  • минимальная скорость ветра: 3 м/с;
  • максимальная скорость ветра: 30 м/с;
  • количество лопастей: 3 штуки;
  • величина диаметра ротора: 18 м.

3. AMPAIR (Великобритания)

Характеристика сферы использования:

  • катера;
  • лодки;
  • удаленные автономные системы питания.

Особенности:

  • небольшой размер;
  • легкий монтаж;
  • возможность установки на ограниченном пространстве;
  • высокое качество и надежность.

Технические особенности Ampair 100:

  • величина номинальной мощности: 100 Вт;
  • величина напряжения генератора: 12 Вт;
  • характеристика лопастей: 6 штук;
  • необходимая скорость ветра: от 3 м/с;
  • стоимость: 2700 $.

4. Fair Wind (Бельгия)

Особенности:

  • возможность использования в частном доме, отеле, АЗС, на ферме;
  • высокий уровень европейского качества;
  • изготовление лопастей — бельгийское;
  • происхождение генераторов — финское;
  • производством инверторов и контроллеров занимается немецкая компания;
  • произведение тестирования и проверки каждой ветроустановки;
  • максимальные порывы ветра 55 м/с;
  • система безопасности имеет полную автоматизацию;
  • присутствует пассивное аэродинамическое торможение;
  • ветроустановки Fair Wind используют вместе с установками солнечных батарей;
  • большая вариация мощностей поможет подобрать ветроустановку для каждого участка индивидуально.

Технические особенности Fair Wind F16:

  • величина номинальной мощности: 10 кВт;
  • величина диаметра ветроколеса: 4 м;
  • величина номинальной скорости ветра: 15 м/с;
  • минимальная скорость ветра: 3 м/с;
  • количество лопастей: 3 штуки, выполнены из авиационного алюминия;
  • величина диаметра ротора: 18 м;
  • стоимость: 20000 $.

5. Fuller Wind (США)

Особенности:

  • полное отсутствие лопастей;
  • компактность использования;
  • небольшая стоимость, по сравнению с классическими ветрогенераторами;
  • основа ветрогенератора — Турбина Теслы, которая состоит из большого количества металлических дисков, которые разделены кольчатыми прокладками;
  • высокий уровень производительности электроэнергии.

6. Fortiss (Нидерланды)

Особенности:

  • использование: электроснабжение домов, снабжение телекоммуникационного оборудования, водоочистительные системы;
  • обеспечение полной независимости от промышленных источников электроэнергии;
  • возможно совместное использование ветроустановок и традиционных источников электропитания;
  • стабильное электроснабжение и понижение расходов на электричество;
  • простота конструкции и легкость монтажа ветрогенераторов;
  • возможность использования солнечных батарей или дизельных генераторов;
  • низкий уровень шума;
  • высокий уровень безопасности.

Технические особенности Fortiss Montana 5,8:

  • характеристика генератора: генератор синхронного магнитного типа;
  • максимальная скорость ветра: 55 м/с;
  • количество лопастей: 3 штуки;
  • необходимая скорость ветра: от 2,5 м/с;
  • варианты системы торможения: механический, электрический;
  • стоимость: 20000 $.

Ветрогенераторы: классификация и типы, конструкция и схема работы

Ветрогенераторы: классификация и типы, конструкция и схема работы

 

Самым актуальным и дешевым источником альтернативной энергии можно считать ветряные электростанции, ведь, как известно, ветер не зависит от расположения залежей природных ресурсов и является абсолютно бесплатным.

В связи с серьезностью положения, крупнейшие страны мира даже заключили Киотское соглашение, которое предписывает стимулировать выработку электроэнергии при помощи альтернативных источников, а также обязывает государство выкупать выработанную таким образом энергию у производителей по высоким тарифам. К альтернативным источникам энергии можно отнести и солнечную энергию, переработку бытовых отходов, использование гидротермальных вод и ряд других, однако наиболее привлекательной является именно энергия ветра. Это обусловлено в первую очередь сравнительно небольшим объемом вложения начального капитала для запуска ветряной электростанции и крайне незначительной зависимостью от необходимого сырья, потому что ветрогенератор может работать в любом месте, где есть ветер, а количество вырабатываемой электрической энергии без труда можно рассчитать с помощью научных методов.

На сегодняшний день ветряные электростанции для дома и промышленного использования уже получили достаточно широкое применение в рядовой жизни. Их можно встретить на объектах, которые удалены от основных электрических сетей. Ведь для подключения электричества приходится прокладывать дополнительные линии электропередач или использовать автономные электростанции, что дорого и не всегда целесообразно.

По расчетам специалистов, для полного обеспечения одного дома электрической энергией достаточно одного ветрогенератора мощностью 5 кВт, при условии, что скорость ветра 1,8-4,5 метра в секунду. Но, к сожалению, ветер весьма непостоянное погодное явление, поэтому желательно приобретать вместе с ветряной электростанцией резервный генератор, приводимый в действие двигателем внутреннего сгорания, или устраивать большую аккумуляторную батарею для запасания выработанной электроэнергии «впрок».

Именно поэтому, прежде чем начинать выбирать модель ветряной электростанции, необходимо проконсультироваться со специалистом, который сможет ответить на ваши вопросы и подобрать оптимальный вариант ветряной электростанции под конкретные требования.

Ветрогенератор, помимо лопастей, которые непосредственно улавливают ветер, и генератора, который преобразует энергию ветра в электрическую, как правило, включает в себя аккумуляторную батарею и инверторную установку. Аккумуляторная батарея необходима для накопления электроэнергии, которая в связи с непостоянством погодных условий просто не может вырабатываться равномерно, а также компенсировать разницу выработки при разной скорости ветра.

Инвертор, в свою очередь, преобразует постоянный ток, подающийся из аккумулятора, в переменный ток, необходимый для работы бытовых электроприборов. Таким образом, каждый элемент ветряной электростанции необходим для выполнения конкретной задачи, и его выбор должен быть обусловлен потребностями в энергии, а по техническим характеристикам подходить для остальных компонентов системы. Все же параметры должны быть предварительно рассчитаны с учетом конкретных условий энергопотребления.

Основные преимущества ветрогенераторов:

 1. Топливо для работы не требуется, основные затраты идут на установку и проведение систематических профилактических работ для стабильной работы ветрогенератора. В итоге затраты на приобретение оборудования могут окупиться уже в течение года.

2. Не требует вмешательства в работу, так как выработка электроэнергии происходит в любой момент, когда дует ветер, и благодаря аккумуляторам накапливается впрок.

3. В отличие от других видов генераторов ветряки абсолютно бесшумны. Качественно сделанные и установленные ветрогенераторы производят не больше шума, чем тот, который создает ветер, крутящий их лопасти.

4. Не уменьшается производительность в зимнее время, поскольку в отличие от солнечных панелей у ветрогенераторов в зимнее время производительность не падает, а, наоборот, вырастает за счет того, что скорость ветра в зимний период обычно выше, чем летом, что является значительным преимуществом, потому что как раз в зимний период сильно возрастает потребность в электроэнергии.

5. Ветрогенераторы можно устанавливать в любых климатических условиях, и для них подходит практически любой рельеф, но следует учитывать, что любая преграда на пути ветра, как-то деревья или дома, может снизить производительность работы ветряка до 30%, но все равно она окажется выше, чем у солнечных батарей.

6. Профилактическое обслуживание генератора следует проводить регулярно, но оно значительно облегчается тем, что при регулярном обслуживании конструкции износ, как правило, незначительный и даже в случае замены определенных компонентов не является дорогим и трудоемким занятием. Таким образом, комплексная ветро-солнечная система для стабильной работы должна включать в себя: ветрогенератор (средний срок службы 15-20 лет), солнечные панели (30-40 лет), контроллер заряда, инвертор (работают примерно по 5-10 лет) и аккумуляторные батареи, которые в зависимости от типа прослужат от 4 до 10 лет.

Такие системы обычно предназначаются для обеспечения электричеством отдельно стоящих объектов, доступ централизованной энергоподачи к которым затруднен или отсутствует. Их мощность может колебаться от 0,8 до 26 кВт и зависит только от потребления электроэнергии объектом и мощности установленного оборудования.

Неуклонное истощение природных ресурсов приводит к тому, что в последнее время человечество занято поиском альтернативных источников энергии. На сегодняшний день известно достаточно большое количество видов альтернативной энергетики, одним из которых является использование силы ветра. Энергия ветра применялось людьми с древности, например, в работе ветряных мельниц. Самый первый ветрогенератор (ветряная турбина), который служил для производства электричества, был построен в Дании в 1890 г. Такие устройства стали применяться в тех случаях, когда требовалось обеспечить электроэнергией какой-либо труднодоступный район.

Принцип действия ветрогенератора:

  1. Ветер вращает колесо с лопастями, которое передает крутящий момент на вал генератора через редуктор.
  2. Инвертор выполняет задачу преобразования полученного постоянного электрического тока в переменный.
  3. Аккумулятор предусмотрен для подачи в сеть напряжения при отсутствии ветра.

Мощность ВЭУ находится в прямой зависимости от диаметра ветроколеса, высоты мачты и силы ветра. В настоящее время производятся ветрогенераторы, диаметр лопастей которых от 0,75 до 60 м и более. Самая маленькая из всех современных ВЭУ – G-60. Диаметр ротора, имеющего пять лопастей, всего 0,75 м, при скорости ветра 3-10 м/с она может вырабатывать мощность 60 Вт, вес ее составляет 9 кг. Такая установка с успехом применяется для освещения, зарядки батарей и работы средств связи.

Все ветрогенераторы могут быть классифицированы по нескольким принципам:

  1. Оси вращения.
  2. Количеству лопастей.
  3. Материалу, из которого выполнены лопасти.
  4. Шагу винта.

Классификация по оси вращения:

  1. Горизонтальные.
  2. Вертикальные.

Наибольшую популярность получили горизонтальные ветрогенераторы, ось вращения турбины которых расположена параллельно земле. Этот тип получил название «ветряной мельницы», лопасти которой вращаются против ветра. Конструкция горизонтальных ветрогенераторов предусматривает автоматический поворот головной части (в поисках ветра), а также поворот лопастей, для использования ветра небольшой силы.

Вертикальные ветрогенераторы гораздо менее эффективны. Лопасти такой турбины вращаются параллельно поверхности земли при любом направлении и силе ветра. Так как при любом направлении ветра половина лопастей ветроколеса всегда вращается против него, ветряк теряет половину своей мощности, что значительно снижает энергоэффективность установки. Однако ВЭУ такого типа проще в установке и обслуживании, поскольку ее редуктор и генератор размещаются на земле. Недостатками вертикального генератора являются: дорогостоящий монтаж, значительные эксплуатационные затраты, а также то, что для установки такой ВЭУ требуется немало места.

Ветрогенераторы горизонтального типа больше подходят для производства электроэнергии в промышленных масштабах, их используют в случае создания системы ветряных электростанций. Вертикальные часто применяют для потребностей небольших частных хозяйств.

Классификация по количеству лопастей:

  1. Двухлопастные.
  2. Трехлопастные.
  3. Многолопастные (50 и более лопастей).

По количеству лопастей все установки делятся на двух- и трех- и многолопастные (50 и более лопастей). Для выработки необходимого количества электроэнергии требуется не факт вращения, а выход на необходимое количество оборотов.

Каждая лопасть (дополнительная) увеличивает общее сопротивление ветрового колеса, что делает выход на рабочие обороты генератора более сложным. Таким образом, многолопастные установки действительно начинают вращаться при меньших скоростях ветра, однако они применяются в том случае, когда имеет значение сам факт вращения, как, например, при перекачке воды. Для выработки электроэнергии ветрогенераторы с большим количеством лопастей практически не применяются. К тому же на них не рекомендуется установка редуктора, потому что это усложняет конструкцию, а также делает ее менее надежной.

Классификация по материалу лопастей:

  1. Ветрогенераторы с жесткими лопастями.
  2. Парусные ветрогенераторы.

Следует отметить, что парусные лопасти значительно проще в изготовлении, а потому менее затратные, нежели жесткие металлические или стеклопластиковые. Однако подобная экономия может обернуться непредвиденными расходами. Если диаметр ветроколеса составляет 3 м, то при оборотах генератора 400-600 об/мин кончик лопасти достигает скорости 500 км/ч. С учетом того обстоятельства, что в воздухе содержится песок и пыль, этот факт является серьезным испытанием даже для жестких лопастей, которые в условиях стабильной эксплуатации требуют ежегодной замены антикоррозийной пленки, нанесенной на концы лопастей. Если не обновлять антикоррозионную пленку, то жесткая лопасть постепенно начнет терять свои рабочие характеристики.

Лопасти парусного типа требуют замены не раз в год, а непосредственно после возникновения первого серьезного ветра. Поэтому автономное электроснабжение, требующее значительной надежности компонентов системы, не рассматривает применение лопастей парусного типа.

Классификация по шагу винта:

  1. Фиксированный шаг винта.
  2. Изменяемый шаг винта.

Безусловно, изменяемый шаг винта увеличивает диапазон эффективных рабочих скоростей ветрогенератора. Однако внедрение данного механизма ведет к усложнению лопастной конструкции, к увеличению веса ветрового колеса, а также снижает общую надежность ВЭУ. Следствием этого является необходимость усиления конструкции, что приводит к значительному удорожанию системы не только при приобретении, но и при эксплуатации.

Современные ветрогенераторы представляют собой высокотехнологичные изделия, мощность которых составляет от 100 до 6 МВт. ВЭУ инновационных конструкций позволяют экономически эффективно использовать энергию самого слабого ветра – от 2 м/с. При помощи ветрогенераторов сегодня можно с успехом решать задачи по электроснабжению островных или локальных объектов любой мощности.

 

Как работает ветряная турбина

От огромных ветряных электростанций, вырабатывающих электроэнергию, до небольших турбин, приводящих в действие один дом, ветряные турбины по всему миру производят чистую электроэнергию для различных энергетических нужд.

В Соединенных Штатах ветряные турбины становятся обычным явлением. С начала века общая мощность ветроэнергетики в США увеличилась более чем в 24 раза. В настоящее время в США достаточно ветроэнергетических мощностей для выработки электроэнергии, достаточной для питания более 15 миллионов домов, что помогает проложить путь к экологически чистой энергии будущего.

Что такое ветряная турбина?

Концепция использования энергии ветра для выработки механической энергии восходит к тысячелетиям. Еще в 5000 году до нашей эры египтяне использовали энергию ветра для передвижения лодок по реке Нил. Американские колонисты использовали ветряные мельницы для измельчения зерна, перекачивания воды и распиловки древесины на лесопилках. Сегодняшние ветряные турбины — это современный эквивалент ветряной мельницы, преобразующий кинетическую энергию ветра в чистую возобновляемую электроэнергию.

Как работает ветряная турбина?

Большинство ветряных турбин состоит из трех лопастей, установленных на башне из стальных труб.Реже встречаются варианты с двумя лопастями, с бетонными или стальными решетчатыми башнями. На высоте 100 футов или более над землей башня позволяет турбине использовать преимущества более высоких скоростей ветра, обнаруживаемых на больших высотах.

Турбины улавливают энергию ветра с помощью лопастей, похожих на пропеллер, которые действуют как крыло самолета. Когда дует ветер, с одной стороны лезвия образуется карман с воздухом низкого давления. Затем воздушный карман низкого давления притягивает к себе лезвие, вызывая вращение ротора.Это называется лифтом. Сила подъемной силы намного сильнее, чем сила ветра на передней стороне лопасти, что называется сопротивлением. Комбинация подъемной силы и сопротивления заставляет ротор вращаться как пропеллер.

Ряд шестерен увеличивают вращение ротора примерно с 18 оборотов в минуту до примерно 1800 оборотов в минуту — скорость, которая позволяет генератору турбины вырабатывать электричество переменного тока.

Обтекаемый корпус, называемый гондолой, содержит ключевые компоненты турбины — обычно включая шестерни, ротор и генератор — находятся внутри корпуса, называемого гондолой.Некоторые гондолы, расположенные на вершине турбинной башни, достаточно велики, чтобы на них мог приземлиться вертолет.

Другой ключевой компонент — это контроллер турбины, который не позволяет скорости ротора превышать 55 миль в час, чтобы избежать повреждения сильным ветром. Анемометр непрерывно измеряет скорость ветра и передает данные контроллеру. Тормоз, также расположенный в гондоле, останавливает ротор механически, электрически или гидравлически в аварийных ситуациях. Изучите интерактивный рисунок выше, чтобы узнать больше о механике ветряных турбин.

Типы ветряных турбин

Существует два основных типа ветряных турбин: с горизонтальной осью и с вертикальной осью.

Большинство ветряных турбин имеют горизонтальную ось: конструкция в виде пропеллера с лопастями, вращающимися вокруг горизонтальной оси. Турбины с горизонтальной осью расположены либо против ветра (ветер ударяет лопасти перед башней), либо по ветру (ветер бьет в башню перед лопастями). Турбины против ветра также включают в себя привод рыскания и двигатель — компоненты, которые вращают гондолу, чтобы ротор был обращен к ветру при изменении его направления.

Хотя существует несколько производителей ветряных турбин с вертикальной осью, они не проникли на рынок коммунальных услуг (мощностью 100 кВт и более) в той же степени, что и турбины с горизонтальным доступом. Турбины с вертикальной осью делятся на две основные конструкции:

  • Drag-based или Savonius, турбины обычно имеют роторы с твердыми лопастями, которые вращаются вокруг вертикальной оси.
  • Лифтовые турбины, или турбины Дарье, имеют высокий вертикальный аэродинамический профиль (некоторые имеют форму взбивания яиц).Windspire — это тип лифтовой турбины, которая проходит независимые испытания в Национальном центре ветроэнергетики Национальной лаборатории возобновляемых источников энергии.
Применение ветряных турбин

Ветровые турбины используются в самых разных сферах — от использования морских ветровых ресурсов до выработки электроэнергии для одного дома:

  • Большие ветряные турбины, которые чаще всего используются коммунальными предприятиями для подачи энергии в сеть, варьируются от 100 киловатт до нескольких мегаватт.Эти турбины для коммунальных предприятий часто объединяются в ветряные электростанции для производства большого количества электроэнергии. Ветряные электростанции могут состоять из нескольких или сотен турбин, обеспечивающих достаточную мощность для десятков тысяч домов.
  • Небольшие ветряные турбины мощностью до 100 киловатт обычно устанавливаются рядом с местами, где будет использоваться вырабатываемая электроэнергия, например, возле домов, телекоммуникационных тарелок или водонасосных станций. Небольшие турбины иногда подключаются к дизельным генераторам, батареям и фотоэлектрическим системам.Эти системы называются гибридными ветровыми системами и обычно используются в удаленных, автономных местах, где нет подключения к коммунальной сети.
  • Морские ветряные турбины используются во многих странах для использования энергии сильных, постоянных ветров, возникающих у береговых линий. Потенциал технических ресурсов ветров над прибрежными водами США достаточен для выработки более 4000 гигаватт электроэнергии, что примерно в четыре раза превышает генерирующие мощности нынешних США.электроэнергетическая система. Хотя не все эти ресурсы будут освоены, это дает большую возможность обеспечить энергией густонаселенные прибрежные города. Чтобы воспользоваться преимуществами огромных морских ветровых ресурсов Америки, Департамент инвестирует в три демонстрационных проекта оффшорной ветроэнергетики, предназначенных для развертывания морских ветровых систем в федеральных водах и водах штата к 2017 году.
Будущее ветряных турбин

Для обеспечения будущего роста США ветроэнергетика, ветровая программа Министерства энергетики работает с отраслевыми партнерами, чтобы повысить надежность и эффективность ветряных турбин, а также снизить затраты.Исследования программы помогли увеличить средний коэффициент использования мощности (показатель производительности электростанции) с 22 процентов для ветряных турбин, установленных до 1998 года, до более чем 32 процентов для турбин, установленных в период с 2006 по 2012 годы. от 55 центов за киловатт-час (кВтч) в 1980 году до менее 6 центов за киловатт-час сегодня в районах с хорошими ветровыми ресурсами.

Ветряные турбины предлагают уникальную возможность использовать энергию в регионах, где население нашей страны нуждается в ней больше всего.Это включает в себя потенциал оффшорного ветра для обеспечения энергией населенных пунктов вблизи береговой линии и способность наземного ветра доставлять электроэнергию в сельские общины с несколькими другими местными источниками энергии с низким содержанием углерода.

Министерство энергетики продолжает работу по развертыванию ветровой энергии в новых районах на суше и на море и обеспечению стабильной и безопасной интеграции этой энергии в электрическую сеть нашей страны.

Принцип работы ветряной турбины — Usimeca

Данные о скорости ветра можно получить из карт ветров или в метеорологической службе.К сожалению, общая доступность и надежность данных о скорости ветра во многих регионах мира крайне низки. Однако в значительных регионах мира среднегодовая скорость ветра превышает 4-5 м / с (метров в секунду), что делает маломасштабную ветроэнергетику привлекательным вариантом. Важно получить точные данные о скорости ветра для данного участка, прежде чем можно будет принять какое-либо решение относительно его пригодности. Методы оценки средней скорости ветра можно найти в соответствующих текстах (см. Раздел «Ссылки и ресурсы» в конце этого информационного бюллетеня).

Сила ветра пропорциональна:

• площадь ветряной мельницы, уносимая ветром
• куб скорости ветра
• плотность воздуха, которая изменяется с высотой

Формула, используемая для расчета мощности ветра, показана ниже:

P = ½.ρ.A.V 3

где, P — мощность в ваттах (Вт)

ρ — плотность воздуха в килограммах на кубический метр (кг / м 3 )
A — рабочая площадь ротора в квадратных метрах (м 2 )
V — скорость ветра в метрах в секунду (м / с)

Тот факт, что мощность пропорциональна кубу скорости ветра, очень важен.Это можно продемонстрировать, указав, что если скорость ветра увеличивается вдвое, сила ветра увеличивается в восемь раз. Поэтому стоит найти участок с относительно высокой средней скоростью ветра.

Ветер в ваттах

Хотя приведенное выше уравнение мощности дает нам мощность ветра, фактическая мощность, которую мы можем извлечь из ветра, значительно меньше, чем предполагает эта цифра. Фактическая мощность будет зависеть от нескольких факторов, таких как тип используемой машины и ротора, сложность конструкции лопастей, потери на трение и потери в насосе или другом оборудовании, подключенном к ветряной машине.Существуют также физические ограничения на количество энергии, которое реально может быть извлечено из ветра. Теоретически можно показать, что любая ветряная мельница может извлекать максимум 59,3% энергии от ветра (это известно как предел Беца). На самом деле, этот показатель обычно составляет около 45% (максимум) для большой турбины, производящей электричество, и от 30% до 40% для ветряного насоса (см. Раздел о коэффициенте производительности ниже). Итак, изменив формулу «Сила ветра», мы можем сказать, что мощность, вырабатываемая ветряной машиной, может быть выражена следующим образом:

P M = ½.Cp.ρ.A.V 3

где,

P M — мощность (в ваттах), доступная от машины
C p — коэффициент полезного действия ветряной машины

Также стоит иметь в виду, что ветряная машина будет работать с максимальной эффективностью только часть времени, в течение которого она работает, из-за колебаний скорости ветра. Грубую оценку мощности ветряной машины можно получить с помощью следующего уравнения;

P A = 0.2 А В 3

где,

P A — средняя выходная мощность в ваттах за год
V — среднегодовая скорость ветра в м / с

Есть два основных физических принципа, с помощью которых можно извлекать энергию из ветра; они возникают за счет создания подъемной силы или силы сопротивления (или комбинации этих двух). Разница между сопротивлением и подъемной силой иллюстрируется разницей между использованием паруса спинакера, который наполняется как парашют и тянет парусную лодку по ветру, и бермудского парусного вооружения, знакомого треугольного паруса, который отклоняется от ветра и позволяет парусной лодке двигаться. путешествовать по ветру или слегка навстречу ветру.

Принцип работы ветряной турбины

Ветряная турбина — это устройство, использующее энергию ветра для приведения лопастей во вращение, тем самым вырабатывая электричество. Ветрогенератор обычно состоит из ветряных турбин, генераторов, хвостовиков, башен, предохранительных механизмов с ограничением скорости и устройств хранения энергии. Принцип работы ветряной турбины относительно прост: ветровое колесо вращается под действием ветра и преобразует кинетическую энергию ветра в механическую энергию вала ветряной турбины.Генератор приводится в движение валом ветряной турбины для выработки электроэнергии.

Базовая комплектация ветрогенератора

Ветроколесо представляет собой ветроуловитель. Его функция — преобразовывать кинетическую энергию обтекающего воздуха в механическую энергию вращения ветряного колеса.

В ветроэнергетике до сих пор используется эта специализированная лопасть гребного винта. Среди типов ветряных турбин используются три типа, а именно генераторы постоянного тока, синхронные генераторы переменного тока и асинхронные генераторы переменного тока.В производстве ветровой энергии малой мощности в основном используются синхронные или асинхронные генераторы переменного тока, а генерируемая мощность переменного тока преобразуется в мощность постоянного тока с помощью выпрямительных устройств.

Преимуществами синхронного генератора переменного тока являются его низкий КПД и его способность генерировать больше энергии, чем генератор постоянного тока при низких скоростях ветра, поэтому он может адаптироваться к широкому диапазону скоростей ветра. Синхронный генератор переменного тока может самостоятельно обеспечивать ток магнитного поля, но его стоимость выше.

В ветряной турбине функция регулятора направления состоит в том, чтобы в любое время повернуть ветряную турбину в сторону направления ветра, чтобы получить максимальную энергию ветра.За исключением ветряных генераторов с подветренной стороны, почти все ветряные генераторы обычно используют хвост для управления направлением ветра. Оперение обычно расположено на заднем конце ветрового колеса, которое находится в зоне следа ветрового колеса. Только когда оперение отдельной ветряной турбины установлено на относительно высоком месте, можно избежать воздействия на нее потока следа ветряной турбины. В качестве материала оперения обычно используется оцинкованная листовая сталь.

Предохранительный механизм ограничения скорости используется для обеспечения безопасной работы ветряной турбины.Скорость и мощность ветрового колеса ветряной турбины тесно связаны с энергией ветра. Скорость и мощность ветрового колеса увеличиваются с увеличением скорости ветра. Если скорость ветра слишком высока, скорость ветряного колеса будет слишком высокой, и генератор будет перегружен. Чрезмерная частота вращения ветряной турбины и перегрузка генератора поставят под угрозу безопасность работы ветрогенератора. Установка предохранительного механизма ограничения скорости может поддерживать скорость вращения ротора ветрогенератора, по существу, постоянной в определенном диапазоне скорости ветра.Помимо устройств ограничения скорости ветровые турбины обычно оснащены специальными тормозными устройствами. Когда скорость ветра слишком высока, ветряное колесо можно остановить, чтобы обеспечить безопасность ветрового колеса при очень высоких скоростях ветра.

Башня является опорным механизмом ветрогенератора, а также важным элементом ветряной турбины. Принимая во внимание такие факторы, как простота перемещения, снижение затрат и т. Д., В 100-ваттных ветряных турбинах обычно используются трубчатые башни.Трубчатая башня в основном состоит из стальных труб, а натяжные тросы проложены в четырех направлениях. В более крупных башнях ветряных турбин обычно используются ферменные конструкции, состоящие из угловой стали или круглой стали.

Ветряная турбина — Energy Education

Рисунок 1. Ветряная турбина. [1]

Ветряные турбины работают путем преобразования кинетической энергии ветра в механическую энергию, которая используется для выработки электроэнергии путем вращения генератора. Эти турбины могут быть наземными или морскими ветряными. [2]

Детали турбины

Рисунок 2. Иллюстрация компонентов ветряной турбины (щелкните, чтобы увеличить). [3]

Современные ветряные турбины бывают разных размеров, но все типы обычно состоят из нескольких основных компонентов: [4]

  • Лопасти ротора — Лопасти ротора ветряной турбины работают по тому же принципу, что и крылья самолета. Одна сторона лезвия изогнута, а другая плоская. Ветер быстрее течет по изогнутому краю, создавая разницу в давлении с обеих сторон лезвия.Лопасти «толкаются» воздухом, чтобы уравновесить разницу давлений, в результате чего лопасти вращаются. [5]
  • Гондола — Гондола содержит комплект шестерен и генератор. Поворотные лопасти связаны с генератором шестернями. Шестерни преобразуют относительно медленное вращение лопастей в скорость вращения генератора примерно 1500 об / мин. [5] Затем генератор преобразует энергию вращения лопастей в электрическую энергию.
  • Башня — лопасти и гондола установлены на вершине башни.Башня сконструирована так, чтобы удерживать лопасти ротора от земли и при идеальной скорости ветра. Башни обычно находятся на высоте 50-100 м над поверхностью земли или воды. Морские башни обычно крепятся к дну водоема, хотя исследования по разработке башни, плавающей на поверхности, продолжаются. [2]

Визуализация турбины

MidAmerican Energy Company имеет отличное видео о конструкции ветряной турбины , для просмотра щелкните здесь.

Видео ниже, созданное UVSAR, подробно показывает детали турбины.

Для дальнейшего чтения

Список литературы

Как работают ветряные турбины — вот что вам нужно знать

Они похожи на пропеллеры самолета, которые крутятся на месте по кругу, крутятся по кругу весь день. Ветряные турбины берут кинетическую энергию ветра и используют свои гигантские роторы, чтобы улавливать часть ее, превращая ее в электричество, и они могут сыграть ключевую роль в спасении нас от катастрофического изменения климата.Давайте подробнее рассмотрим, как на самом деле работают ветряные турбины.

Изображение предоставлено: Flickr / Richard Edmond

Ветряные турбины, по сути, основаны на простом принципе: ветер вращает лопасти, в результате чего вращается ось, прикрепленная к генератору, производящему электричество. Чем сильнее ветер, тем больше вырабатывается электроэнергии. Вот почему мы обычно видим промышленные ветряные электростанции с высокими башнями и большими лопастями по всему миру: большие лопасти могут собирать больше энергии и более эффективны.Но хотя основной принцип прост, технология сложна.

Ветряные мельницы вращают мир

Турбина — это машина, которая вращается и улавливает часть проходящей энергии. Турбины используются в самых разных машинах, от реактивных двигателей до гидроэлектростанций. В ветряной турбине лопасти ротора являются «турбинной» частью, подобной крыльям аэродинамического профиля на самолете. Они имеют изогнутую форму и получают кинетическую энергию (энергию движения), когда дует ветер.

Хотя мы говорим о «ветряных турбинах», на самом деле турбина является лишь частью этих машин.Для большинства турбин другой ключевой частью является генератор, шестерни которого преобразуют относительно медленное вращение вращающихся лопастей в движение с более высокой скоростью. Таким образом, ветер обеспечивает движение и крутящий момент, а генератор делает все остальное, являясь неотъемлемой частью всех турбин.

Чем длиннее лопасти ротора, тем больше энергии они могут улавливать от ветра. Лопасти умножают силу ветра, как колесо и ось, поэтому ветра часто бывает достаточно, чтобы лопасти повернулись. Даже в этом случае ветряные турбины не вырабатывают максимальную мощность большую часть времени — это намеренная особенность их конструкции для эффективной работы при постоянно меняющихся ветрах.

Типичная гондола ветряной турбины находится на высоте 85 метров (280 футов) от земли, и для этого есть веская причина. Ветер распространяется намного быстрее, когда нет препятствий на уровне земли. Таким образом, если лопасти ротора турбины находятся высоко в воздухе, они могут улавливать гораздо больше энергии ветра, чем при опускании, а улавливание энергии — вот что такое ветровые турбины.

Большинство ветряных турбин имеют мощность 2-3 мегаватта (МВт), которые могут производить более 6 миллионов киловатт-часов (кВтч) электроэнергии ежегодно.Этого достаточно, чтобы удовлетворить потребность в электроэнергии около 1500 домохозяйств. Чем быстрее дует ветер, тем больше вырабатывается электроэнергии — до определенного уровня. Если ветер будет слишком сильным, турбины отключатся, чтобы предотвратить повреждение.

Планируется, что ветряные электростанции

будут находиться в местах с надежным ветром круглый год. Обычно это происходит на вершине холма с большим количеством открытого пространства вокруг и в прибрежных местах. Ветряная турбина обычно имеет КПД 30-45%, а во время пиковых ветров эффективность повышается до 50%.Если бы они были эффективны на 100%, ветер бы утихал после прохождения турбины.

Типы ветряных турбин

Есть два основных типа ветряных турбин, горизонтально-осевые и вертикально-осевые, и размер турбины сильно различается. Длина лопастей — самый важный фактор в определении количества электроэнергии, которую может генерировать ветряная турбина. В то время как небольшие турбины могут генерировать около 10 кВт, самая большая из действующих может генерировать до 10 МВт. Еще более крупные в настоящее время разрабатываются, особенно для оффшоров.

Горизонтально-осевые турбины на сегодняшний день являются наиболее распространенными — это ветряные турбины, с которыми большинство из нас знакомо. Большинство этих турбин имеют три лопасти и работают против ветра, при этом турбина поворачивается в верхней части башни, так что лопасти обращены против ветра.

Между тем турбины с вертикальной осью больше похожи на взбиватель яиц, чем на пропеллер самолета. Они всенаправленные, а это значит, что для работы их не нужно настраивать так, чтобы они указывали на ветер. Лопасти прикреплены сверху и снизу вертикального ротора.Поскольку они не так эффективны, как горизонтальные, они встречаются гораздо реже, но в некоторых ситуациях они предлагают большие перспективы.

Использование ветряных турбин

Наземные ветряные турбины можно подключить к электросети, объединить с фотоэлектрической системой или даже использовать в качестве автономных приложений домовладельцами и фермерами. Для источников энергии ветра (размером в мегаватт) большое количество ветряных турбин обычно строится близко друг к другу, чтобы сформировать ветряную электростанцию, также называемую ветровой электростанцией.

Когда турбины любого размера устанавливаются на стороне потребителя электросчетчика, они называются «распределенными» ветряными турбинами. Большинство турбин, которые в настоящее время используются в распределенных приложениях, имеют небольшие размеры и используются в жилых, сельскохозяйственных и небольших промышленных приложениях.

Наличие турбины может даже принести вам прибыль, поскольку вы можете продавать лишнюю энергию, которую не используете (если это позволяет национальная сеть). Однако установка ветряной турбины обычно сложнее, чем что-то вроде солнечной панели.

Изображение предоставлено: Flickr / Paul

Оффшорная ветроэнергетика — относительно новая отрасль во всем мире. Турбины, как правило, массивные, в некоторых случаях даже выше Статуи Свободы. Их компоненты транспортируются на судах и баржах, что снижает логистические проблемы, связанные с наземными турбинами. Они могут улавливать мощные океанские ветры и генерировать огромное количество энергии.

Электроэнергия, производимая морскими ветряными турбинами, возвращается на сушу через серию кабельных систем, проложенных на морском дне.Это электричество направляется через прибрежные центры нагрузки, которые определяют приоритетность электроснабжения и распределяют его в электрическую сеть для питания домов, школ и предприятий. Это делает морские ветряные турбины более дорогими в установке и управлении, но они также производят больше энергии — общий компромисс.

Преимущества и недостатки ветряных турбин

Трудно представить, почему кто-то будет возражать против чистых и экологически чистых ветряных турбин, особенно по сравнению с грязными угольными установками.Но у них есть некоторые недостатки, которые необходимо учитывать.

Во-первых, они не вырабатывают столько электроэнергии, как обычные газовые, атомные или угольные станции. Типичная турбина имеет максимальную мощность 2 МВт, что достаточно для питания 1000 домов, если она вырабатывает энергию в 30% случаев. Самые большие оффшорные ветряные турбины могут производить около 13 МВт, поскольку ветры на море сильнее и устойчивее, и питают около 6500 домов. Это означает, что нам потребуется 1000 турбин мощностью 2 МВт, чтобы вырабатывать столько же энергии, сколько значительная (2000 МВт) атомная электростанция или станция на ископаемом топливе. .На практике, поскольку ископаемое топливо и атомные электростанции вырабатывают энергию постоянно, в то время как ветер переменчив, вам потребуется гораздо больше. Энергия ветра переменчива, и эффективная энергосистема требует предсказуемых поставок энергии для удовлетворения меняющегося спроса.

Вот почему смесь разных видов энергии была бы идеальной. Некоторые из них будут вырабатывать электроэнергию всякий раз, когда могут, например ветер, некоторые будут работать непрерывно, например ядерные, некоторые будут вырабатывать энергию в часы пик, например, гидроэлектростанции, а некоторые будут повышать или понижать мощность в короткие сроки, например, природный газ.Большие и эффективные батареи могут решить эту проблему, но ветер не может быть единственным источником энергии.

Ветровые турбины тоже нельзя заклинить. Они должны располагаться на некотором расстоянии друг от друга и занимать много места. Чтобы привести всю страну в действие одним ветром, потребуется покрыть турбинами огромную территорию. Подключение большого количества ветряных турбин к электросети также может быть намного сложнее, чем просто подключение одной электростанции.

Турбины

также могут беспокоить диких животных, поскольку они довольно шумные, приносят людей в этот район и представляют значительный риск столкновения для птиц.Конструкция большинства турбин делает их труднодоступными для птиц, что способствует ударам. Вот почему исследования предложили покрасить одну из лопастей ротора в черный цвет, чтобы птицы могли видеть турбины и избегать столкновений.

С другой стороны, ветряные турбины являются ведущим источником чистой энергии. После постройки они не производят выбросов углекислого газа, вызывающего глобальное потепление, или выбросов двуокиси серы, вызывающих кислотные дожди. Вырабатываемая ими энергия безгранична и бесплатна в течение стандартного срока службы 25 лет, за исключением запасных частей и технического обслуживания.

Их строительство оказывает определенное воздействие на окружающую среду, поскольку башни и гондолы имеют металлический и бетонный фундамент, чтобы предотвратить их падение. Утилизация ветряных турбин, как известно, сложна и действует как своего рода «ахиллесова пята» ветровой энергии.

Несмотря на это, они имеют один из самых низких уровней выбросов углекислого газа среди всех форм выработки электроэнергии, если смотреть на весь срок их эксплуатации. Кроме того, они намного дешевле производимых киловатт-часов электроэнергии.

Насколько велика ветровая энергия сейчас?

Прошлый год был лучшим годом в истории для мировой ветроэнергетики: было установлено 93 ГВт новых мощностей, что на 53% больше, чем в прошлом году, по данным Глобального совета по ветроэнергетике (GWEC).Сегодня во всем мире имеется 743 ГВт ветроэнергетической мощности, что помогает избежать 1,1 миллиарда тонн CO2 в мире, что эквивалентно ежегодным выбросам в Южной Америке.

Тем не менее, этого роста недостаточно для обеспечения того, чтобы мир стал углеродно-нейтральным к 2050 году, как это согласовано в Парижском соглашении об изменении климата 2015 года. Согласно оценкам GWEC, миру необходимо установить ветроэнергетику в три раза быстрее в течение следующего десятилетия, чтобы оставаться на пути к нулевому значению и избежать наихудших последствий изменения климата.

Энергия ветра, безусловно, будет играть большую роль в ближайшие годы, поскольку мир прощается с источниками энергии на ископаемом топливе для сокращения выбросов парниковых газов. Но насколько большая роль будет зависеть от того, в какой точке мира вы находитесь и есть ли лучшие альтернативы. В странах с ветреной погодой (а значит, в подавляющем большинстве стран мира) он определенно будет сильным соперником.

Типы ветрогенераторов и их функции

Большинство из нас видели ветряные турбины, но знаете ли вы, какие элементы помогают в бесперебойной работе этих турбин?

Один из таких элементов — ветряные генераторы.Прежде чем мы поговорим о генераторах более подробно, расскажите нам об их функциях в работе ветряных турбин.

Ветровые турбины вырабатывают электроэнергию, используя энергию ветра для привода электрогенератора.

Когда ветер проходит над лопастями, он создает вращающую силу. Вращающиеся лопасти заставляют вращаться вал внутри гондолы, переходящей в редуктор.

Затем коробка передач ускоряет вращение до уровня, подходящего для генератора, который использует магнитные поля для преобразования энергии вращения в электричество.

В основном ветряные турбины бывают двух типов — турбины с фиксированной скоростью и ветровые турбины с регулируемой частотой вращения.

Из этих двух типов ветряных турбин наиболее часто используются турбины с фиксированной частотой вращения, в которых индукционный генератор напрямую подключен к сети. Однако у этой системы есть свои недостатки, потому что она часто не может контролировать сетевое напряжение.

Чтобы избежать недостатков ветряной турбины с фиксированной скоростью, используются ветровые турбины с регулируемой скоростью. Эти турбины обеспечивают стабильность динамического поведения турбины и снижают шум при низких скоростях ветра.

Однако для работы ветряной турбины с регулируемой скоростью необходим электронный преобразователь, и именно здесь играет роль генератор ветряной турбины.

Для оснащения ветряной турбины любым трехфазным генератором, например синхронным генератором и асинхронным генератором, для обеспечения более стабильной работы.

В этой статье мы в основном поговорим о различных типах ветряных генераторов и их функциях.

Какие типы ветряных генераторов?

Существует четыре типа ветрогенераторов (WTG), которые можно рассматривать для различных систем ветряных турбин, а именно:

  1. Генераторы постоянного тока (DC)
  2. Синхронные генераторы переменного тока (AC)
  3. Асинхронные генераторы переменного тока и
  4. Импульсные генераторы сопротивления.

Каждый из этих генераторов может работать с фиксированной или переменной скоростью. Из-за динамического характера энергии ветра идеально использовать WTG с переменной скоростью.

Работа генератора с регулируемой частотой вращения снижает физическую нагрузку на лопатки и привод турбины, что улучшает аэродинамическую эффективность системы и переходные характеристики крутящего момента.

1. Генератор постоянного тока

Ветрогенератор постоянного тока состоит из ветряной турбины, генератора постоянного тока, инвертора на биполярном транзисторе с изолированным затвором (IGBT), трансформатора, контроллера и электросети.

Для генераторов постоянного тока с параллельной обмоткой ток возбуждения увеличивается с увеличением рабочей скорости, тогда как баланс между крутящим моментом привода ветряной турбины определяет фактическую скорость ветряной турбины.

Электричество извлекается через щетки, которые подключают комментатор, который используется для преобразования генерируемой мощности переменного тока в выход постоянного тока.

Эти генераторы требуют регулярного обслуживания и относительно дороги из-за использования коммутаторов и щеток.

Использование WTG постоянного тока необычно для ветряных турбин, за исключением ситуаций с низким энергопотреблением.

2. Синхронный генератор переменного тока Синхронные ветряные генераторы

переменного тока могут принимать постоянное или постоянное возбуждение от постоянных магнитов или электромагнитов.

Вот почему они оба называются «синхронными генераторами с постоянными магнитами (PMSG)» и «синхронными генераторами с электрическим возбуждением (EESG)» ».

Когда ветряная турбина приводит в движение ротор, трехфазная энергия вырабатывается в обмотках статора, которые подключены к сети через трансформаторы и преобразователи мощности.

В случае синхронных генераторов с фиксированной частотой вращения частота вращения ротора должна быть точно такой же, как и частота вращения синхронного генератора. В противном случае синхронизация будет потеряна.

При использовании синхронных генераторов с фиксированной частотой вращения случайные колебания скорости ветра и периодические возмущения возникают из-за эффектов затенения башни.

Кроме того, синхронные WTG имеют тенденцию к низкому демпфирующему эффекту, так что они не позволяют электрически поглощать переходные процессы трансмиссии.

Когда синхронные WTG интегрированы в электрическую сеть, синхронизация их частоты с сетью требует деликатной операции.

Кроме того, эти генераторы более сложны, дороги и подвержены отказам по сравнению с индукционными генераторами.

В течение последних десятилетий генераторы с постоянными магнитами все чаще использовались в ветряных турбинах из-за их высокой плотности мощности и малой массы.

Конструкция генераторов PM относительно проста. Прочные PM устанавливаются на ротор для создания постоянного магнитного поля, а произведенная электроэнергия собирается от статора с помощью коллектора, контактных колец или щеток.

Иногда PM интегрируются в цилиндрический литой алюминиевый ротор для снижения стоимости. Основной принцип работы генераторов PM аналогичен синхронным генераторам, за исключением того, что генераторы PM могут работать асинхронно.

Одним из преимуществ PMSG является отсутствие коммутатора, контактных колец и щеток, что делает машины прочными, надежными и простыми.

Из-за изменчивости фактических скоростей ветра PMSG не могут производить электричество с фиксированной частотой.Для этого генераторы должны быть подключены к электросети путем выпрямления переменного-постоянного-переменного тока преобразователями мощности.

Это означает, что генерируемая мощность переменного тока, содержащая переменную частоту и величину, сначала выпрямляется в постоянный постоянный ток, а затем преобразуется обратно в мощность переменного тока.

Кроме того, эти машины с постоянными магнитами могут быть полезны для приложений с прямым приводом, поскольку в этом случае они могут избавиться от проблемных редукторов, которые вызывают отказы большинства ветряных турбин.

Одним из возможных вариантов синхронных генераторов является высокотемпературный сверхпроводящий генератор.

Сверхпроводящие генераторы имеют такие компоненты, как задняя часть статора, медная обмотка статора, катушки возбуждения HTS, сердечник ротора, опорная конструкция ротора, система охлаждения ротора и другие.

Сверхпроводящие катушки могут пропускать почти в 10 раз больший ток, чем традиционные медные провода с умеренным сопротивлением и потерями в проводнике.

Кроме того, использование сверхпроводников может остановить все потери мощности в цепи возбуждения. Кроме того, увеличение плотности тока позволяет создавать сильные магнитные поля, что приводит к значительному уменьшению массы и размеров генераторов ветряных турбин.

Таким образом, сверхпроводящие генераторы могут иметь больший потенциал в плане высокой мощности и снижения веса и могут лучше подходить для ветряных турбин мощностью 10 МВт или более.

В 2005 году компания Siemens запустила в производство первый в мире сверхпроводящий ветрогенератор, представляющий собой синхронный генератор мощностью 4 МВт.

Наряду с более высокой мощностью синхронные генераторы могут создавать ряд технических проблем, особенно для долговечных ветряных турбин, не требующих особого обслуживания.

Одной из таких проблем, например, является охлаждение системы и восстановление работы после технической неполадки.

3. Асинхронные генераторы переменного тока

Когда традиционный способ производства электроэнергии использует синхронные генераторы, в современных ветроэнергетических системах используются индукционные машины, широко применяемые в ветряных турбинах.

Индукционные генераторы подразделяются на двух типов : индукционных генераторов с фиксированной скоростью (FSIG) с короткозамкнутыми роторами и индукционных генераторов с двойным питанием (DFIG) с обмотанными роторами.

Как правило, индукционные генераторы просты, надежны, недороги и хорошо спроектированы.

Эти генераторы обладают высокой степенью демпфирования и могут поглощать колебания скорости ротора и переходные процессы трансмиссии.

В случае индукционных генераторов с фиксированной частотой вращения статор подключается к сети через трансформатор, а ротор подключается к ветряной турбине через редуктор.

До 1998 года большинство производителей ветряных турбин производили индукционные генераторы с фиксированной скоростью 1.5 МВт и менее.

Эти генераторы обычно работали со скоростью 1500 оборотов в минуту (об / мин) в энергосистеме с частотой 50 Гц вместе с трехступенчатой ​​коробкой передач.

Индукционные генераторы с короткозамкнутым ротором (SCIG) могут использоваться в ветряных турбинах с регулируемой скоростью, а также в управляющих синхронных машинах.

В таких случаях, однако, выходное напряжение невозможно контролировать, и требуется внешний источник реактивной мощности.

Это означает, что индукционные генераторы с фиксированной скоростью имеют ограничения, когда дело доходит до работы только в узком диапазоне дискретных скоростей.

Другими недостатками этих генераторов являются размер машины, низкий КПД, шум и надежность.

В наши дни более 85% установленных ветряных турбин используют DFIG, а самая большая мощность для коммерческих ветряных турбин увеличилась до 5 МВт.

Увеличенная мощность дает несколько преимуществ, в том числе высокий выход энергии, снижение механических нагрузок, колебаний мощности и управляемость реактивной мощности.

Индукционные генераторы также подвержены нестабильности напряжения.Кроме того, эффект демпфирования может привести к потерям мощности в роторе. Нет прямого контроля ни напряжения на клеммах, ни устойчивых токов короткого замыкания.

В этих случаях можно регулировать скорость и крутящий момент DFIG, управляя преобразователем на стороне ротора (RSC).

В подсинхронном режиме преобразователь на стороне ротора работает как инвертор, а преобразователь на стороне сети (GSC) — как выпрямитель.

С другой стороны, в случае суперсинхронной работы RSC работает как выпрямитель, а GSC как инвертор.

4. Ветрогенератор с переключаемым сопротивлением

Генераторы ветряных турбин с регулируемым сопротивлением имеют такие особенности, как прочные ротор и статор. При вращении ротора изменяется сопротивление магнитной цепи, соединяющей статор и ротор. Затем он, в свою очередь, наводит токи в обмотке якоря (статора).

Реактивный ротор изготовлен из ламинированных стальных листов и не имеет обмоток электрического поля или постоянных магнитов.

По этой причине генератор сопротивления прост, его легко изготовить и собрать. Еще одна очевидная особенность этих генераторов — их высокая надежность. Это потому, что они могут работать в суровых или высокотемпературных условиях.

Из-за того, что реактивный крутящий момент составляет лишь часть электрического крутящего момента, ротор переключаемого реактивного генератора обычно больше, чем другой с электрическими возбуждениями для данной скорости крутящего момента.

Когда генераторы сопротивления объединены с функциями прямого привода, машины будут довольно большими и тяжелыми, что сделает их менее полезными в ветроэнергетических установках.

Статья по теме: 10 крупнейших оффшорных ветряных электростанций в мире

Заключительные слова

Суть в том, что ветряные турбины работают по простому принципу — вместо того, чтобы использовать электричество для выработки ветра, как вентилятор, ветровые турбины используют ветер для выработки электроэнергии. Ветер вращает лопасти турбины вокруг ротора, который вращает генератор, вырабатывающий электричество.

Эту механическую мощность можно использовать для определенных задач (например, перекачивания воды), или генератор может преобразовывать эту мощность в электричество.

Ветряные турбины могут быть построены на суше или в море в крупных водоемах, таких как озера и океаны. Правительства многих стран мира финансируют такие проекты. Например, Министерство энергетики США в настоящее время финансирует проекты по развитию морских ветроэнергетических проектов в водных объектах страны.

Статья по теме: Статистика солнечной энергии в США, 2019

С самого начала Сумит был глубоко обеспокоен климатическим кризисом и всегда чувствовал себя обиженным, видя, как вмешательство человека нарушает экологический баланс.Он на 100% считает, что солнечная энергия — это недостающая загадка для нашего энергетического перехода, и мы должны приложить все усилия, чтобы внедрить это энергетическое решение во всем мире. Если вы хотите опубликовать свои статьи в журнале SolarFeeds, щелкните здесь.

Принцип работы ветряной турбины и как ее сделать

Сегодня мне нужно обсудить, как работает ветряная турбина . Этот вопрос пару раз поднимался в обсуждениях, которые я вел с другими мастерами, и ответ на это обращение был шокирующе прямолинейным.Очевидно, что краткий ответ на запрос заключается в том, что ветряная турбина работает, улавливая энергию ветра и преобразуя ее в энергию. С этого момента эта энергия отправляется по проводам в ваш дом, на навес для машины или в систему хранения жизненных сил (обычно аккумуляторы).

Принцип работы ветряной турбины

Однако, как правило, мы можем пойти гораздо глубже, не слишком запутываясь; это о материальных науках о ловле ветра. Чтобы хорошо обрисовать тему, мы должны обсудить два компонента.Прежде всего, мы должны скрыть, как улавливается жизненная сила ветра. С этого момента мы должны обсудить, как эта моторная жизнеспособность трансформируется в полезную мощность.

Как работает ветряная турбина — Улавливание ветра

Для начала нам нужно скрыть одну простую мысль. Ветряная турбина улавливает поступательную силу ветра и после этого использует это ограничение для поворота заостренных кусков стали. На самом деле здесь происходит то, что мы берем поступательную силу ветра и преобразуем ее в боковой толчок, чтобы повернуть заостренные куски стали.Конфигурация с острыми краями вашей ветряной турбины — это действительно то, что зависит от этого обмена жизненной силой. Используя наклонную или изогнутую заостренную сталь (обычно как наклонную, так и изогнутую), ветер перенаправляется по такому пути до такой степени, что ветер толкает его в сторону и, таким образом, поворачивает край.

Очевидно, нам также необходимо обсудить хвостовую часть вашей турбины. Без него боковой привод, толкаемый изгибом ваших режущих кромок, мог бы перевернуть весь сборник турбины, а не просто заточенные куски стали.В то время как ветер толкает вас в стороны, чтобы повернуться, он также течет прямо, позволяя хвостовику, который удерживает сборку против ветра, и позволяет вашим заостренным кускам стали свободно поворачиваться.

Как работают ветряные турбины — преобразование энергии ветра в электричество

Когда мы понимаем, как ветер толкает силу, чтобы поворачивать режущие кромки, нам дополнительно необходимо обсудить, как генерируется энергия.Позади заостренной стальной сборки находится магнитный ротор , который прикреплен к полюсу, который, таким образом, соединен с вашим ветрогенератором. В большинстве частных случаев ветрогенератор — это нечто столь же простое, как двигатель постоянного тока.

Если вы понимаете основы энергии, вы можете понять, что вращая магниты вокруг передатчика, вы управляете энергией. В основном это то, чем является двигатель постоянного тока. Он состоит из сильных магнитов , которые могут вращаться вокруг токопроводящего фокуса.По мере того, как края вашей турбины вращаются на ветру, полюс вращает ваши магниты в вашем двигателе постоянного тока, который обрабатывает полезную мощность. В основном это работа ветряных турбин, и, несмотря на то, что мы только что исследовали физику, лежащую в основе всего, теперь у вас есть превосходное понимание того, как ловить ветер, чтобы приводить в действие ваш дом.

Заключение

Спасибо, что прочитали нашу статью, и мы надеемся, что она поможет вам лучше понять принцип работы ветряной турбины .Если вы хотите купить магнитные изделия, мы советуем вам посетить Stanford Magnets для получения дополнительной информации.

Являясь одним из ведущих мировых поставщиков магнитов, компания Stanford Magnets имеет более чем двадцатилетний опыт производства и продажи всех видов магнитных изделий, обеспечивая клиентов высококачественными постоянными магнитами из редкоземельных элементов продуктов например, неодимовые магниты и другие постоянные магниты, не являющиеся редкоземельными элементами, по очень конкурентоспособной цене.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *