Содержание

Правило левой и правой руки для магнитного поля

В физике часто используют правила:

  • правой руки;
  • левой руки;
  • правого и левого винтов (правило буравчика).

Это, так называемые, мнемонические правила. Мнемоническими называют специальные приемы и способы, которые упрощают процесс запоминания необходимой информации, позволяя образовывать ассоциации, проводя параллели между абстрактными объектами (фактами) и объектами, имеющими визуальные, аудиальные или кинетические представления.

Одним из первых в физике мнемоническое правило предложил П. Буравчик. Его правило дает возможность найти направление вектора, получающегося в результате векторного произведения.

Использование правила правой руки в электродинамике

Если в магнитном поле подвесить на тонком и гибком проводе рамку с током, то она будет поворачиваться и расположится определенным образом. Аналогично поведение магнитной стрелки. Это свидетельствует о векторном характере физической величины, характеризующей магнитное поле.

При этом направление этого вектора будет связано с ориентацией рамки и стрелки. Физической векторной величиной, которая характеризует магнитное поле, стал вектор магнитной индукции ($\vec{B}$).

Помощь со студенческой работой на тему


Правило левой и правой руки для магнитного поля

Это один из главных параметров, описывающих состояние магнитного поля, поэтому необходимо уметь находить его величину и, конечно, направление.

Для определения направления вектора магнитной индукции используют:

  • правило правого винта или
  • правило правой руки.

Направлением вектора магнитной индукции, в месте локализации рамки с током, считают направление положительного перпендикуляра ($\vec{n}$) к этой рамке. Положительная нормаль ($\vec{n}$) будет иметь направление такое же, как направление поступательного перемещения правого винта, если его головку вращать по току в рамке (рис.1 (a)).

Рисунок 1. Определение направления вектора магнитной индукции.

Автор24 — интернет-биржа студенческих работ

Так, обладая пробной рамкой с током, помещая ее в исследуемое поле, давая ей свободно вращаться в нем, можно определить, как направлен вектор магнитной индукции в каждой точке поля. Необходимо только дать рамке прийти в положение равновесия, затем использовать правило правого винта.

Теперь обратимся к правилу правой руки. Сожмем правую руку в неплотный кулак (рис.2). Отогнем большой палец на 90°. Руку разместим так, чтобы большой палец указывал направление течения тока, тогда согнутые остальные четыре пальца укажут направление линий магнитной индукции поля, которое создает ток. А мы помним, что касательная в каждой точке поля к силовой линии (линии магнитной индукции) указывает направление $\vec{B}$.

Рисунок 2. Правило правой руки. Автор24 — интернет-биржа студенческих работ

Рассмотрим соленоид. Обхватим правой ладонью его так, чтобы четыре пальца совпали с направлением тока в нем, тогда отогнутый на девяносто градусов палец укажет, как направлено магнитное поле, создаваемое у него внутри.

Нам известно, что если в магнитном поле перемещать проводник, то в этом проводнике будет возникать ток индукции. Правило правой руки можно использовать для определения направления течения тока индукции в таких проводниках. При этом:

  • линии индукции магнитного поля должны входить в открытую ладонь правой руки,
  • палец этой руки отогнуть на девяносто градусов, и направить по скорости перемещения проводника,
  • вытянутые четыре пальца будут указывать, как направлен ток индукции.

Правилом правой руки можно воспользоваться при определении направления ЭДС индукции в контуре:

Согнутыми четырьмя пальцами правой руки охватить контур, в котором индуцируется ЭДС при изменении магнитного потока, отогнуть на девяносто градусов большой палец этой руки и направить его по направлению магнитного потока при его увеличении (или против направления магнитного потока при его уменьшении), тогда согнутые пальцы укажут на направление противоположное ЭДС.

Правило левой руки для определения направления силы Ампера

Любой проводник с током в магнитном поле подвергается действию магнитной силы. Данная сила называется силой Ампера. На элементарный проводник ($dl$) с током ($I$), помещенный в магнитное поле с индукцией $\vec{B}$ действует сила Ампера, равная:

$d\vec{F}_{A}=I\left( d\vec{l}\times \vec{B} \right)\left( 1 \right)$.

В правой части выражения (1) мы видим векторное произведение ($ d\vec{l}\times \vec{B} $), из этого следует, что сила Ампера направлена перпендикулярно плоскости в которой лежат векторы $\vec{dl}$ и $\vec{B}$. При этом конкретное направление силы Ампера можно найти, используя правило левой руки:

Раскрытую ладонь левой руки располагают так, чтобы:

  • четыре пальца ладони указывали направление течения тока;
  • линии магнитной индукции входили в ладонь,

тогда, отогнутый под прямым углом большой палец данной руки, укажет направление силы Ампера (рис.3).

Рисунок 3. Правило левой руки. Автор24 — интернет-биржа студенческих работ

Правило левой руки часто применяют, когда необходимо выяснить в какую сторону отклоняется проводник, находящийся в магнитном поле.

Использование правила левой руки для нахождения направления силы Лоренца.

Правило левой руки применимо к силе Лоренца. Так как электрический ток создают перемещающиеся заряженные частицы, следовательно, на движущийся в магнитном поле заряд будет действовать сила.

Определение 1

Силой Лоренца, называют силу, действующую на заряженную частицу, движущуюся в магнитном поле, равную:

$\vec{F}_{L}=q\left( \vec{v}\times \vec{B} \right)\left( 2 \right)$.

где q – заряд частицы; $\vec{v}$ – скорость движения частицы относительно магнитного поля; $\vec{B}$ — магнитная индукция поля, в котором частица перемещается.

В определении (2) мы видим векторное произведение $\vec{v}$ и $\vec{B}$ , это означает, что сила Лоренца будет направлена перпендикулярно плоскости в которой находятся соответствующие векторы.

Для определения направления $\vec{F_L}$ воспользуемся правилом левой руки, при этом расположим открытую ладонь левой руки так, что:

  • четыре пальца этой руки укажут направление скорости движения частицы;
  • вектор магнитной индукции будет входить в ладонь,

тогда отогнутый на девяносто градусов большой палец этой руки укажет нам направление силы Лоренца, движущейся в магнитном поле, если эта частица несет положительный заряд.

Если частица является отрицательной, то большой палец укажет направление противоположное силе, действующей на частицу со стороны магнитного поля.

Правило правой и левой руки в физике: применение в повседневной жизни

Вступив во взрослую жизнь, мало кто вспоминает школьный курс физики. Однако иногда необходимо покопаться в памяти, ведь некоторые знания, полученные в юности, могут существенно облегчить запоминание сложных законов. Одним из таких является правило правой и левой руки в физике. Применение его в жизни позволяет понять сложные понятия (к примеру, определить направление аксиального вектора при известном базисном). Сегодня попробуем объяснить эти понятия, и как они действуют языком, доступным простому обывателю, закончившему учёбу давно и забывшему ненужную (как ему казалось) информацию.

Правило правой руки (буравчика) легко понять, глядя на обычный штопор

Читайте в статье:

Формулировка правила буравчика

Пётр Буравчик – это первый физик, сформулировавший правило левой руки для различных частиц и полей. Оно применимо как в электротехнике (помогает определить направление магнитных полей), так и в иных областях. Оно поможет, к примеру, определить угловую скорость.

Простое и понятное объяснение с наглядным примером

Правило буравчика (правило правой руки) – это название не связано с фамилией физика, сформулировавшего его. Больше название опирается на инструмент, имеющий определённое направление шнека. Обычно у буравчика (винта, штопора) т.н. резьба правая, входит в грунт бур по часовой стрелке. Рассмотрим применение этого утверждения для определения магнитного поля.

Главное – не забыть, в каком направлении течёт ток

Нужно сжать правую руку в кулак, подняв вверх большой палец. Теперь немного разжимаем остальные четыре. Именно они указывают нам направление магнитного поля. Если же говорить кратко, правило буравчика имеет следующий смысл – вкручивая буравчик вдоль направления тока, увидим, что рукоять вращается по направлению линии вектора магнитной индукции.

Правило правой и левой руки: применение на практике

Рассматривая применение этого закона, начнём с правила правой руки. Если известно направление вектора магнитного поля, при помощи буравчика можно обойтись без знания закона электромагнитной индукции. Представим, что винт передвигается вдоль магнитного поля. Тогда направление течения тока будет «по резьбе», то есть вправо.

Ещё одно чёткое и понятное объяснение

Применение правила правой руки для соленоида

Обратим внимание на постоянный управляемый магнит, аналогом которого является соленоид. По своей сути он является катушкой с двумя контактами. Известно, что ток движется от «+» к «-». Опираясь на эту информацию, берём в правую руку соленоид в таком положении, чтобы 4 пальца указывали направление течения тока. Тогда вытянутый большой палец укажет вектор магнитного поля.

Применение правила правой руки для соленоида

Правило левой руки: что можно определить, воспользовавшись им

Не стоит путать правила левой руки и буравчика – они предназначены для совершенно разных целей. При помощи левой руки можно определить две силы, вернее, их направление. Это:

  • сила Лоренца;
  • сила Ампера.

Попробуем разобраться, как это работает.

Применение для силы Ампера

Правило левой руки для силы Ампера: в чём оно заключается

Расположим левую руку вдоль проводника так, чтобы пальцы были направлены в сторону протекания тока. Большой палец будет указывать в сторону вектора силы Ампера, а в направлении руки, между большим и указательным пальцем будет направлен вектор магнитного поля. Это и будет правило левой руки для силы ампера, формула которой выглядит так:

Правило левой руки для силы Лоренца: отличия от предыдущего

Располагаем три пальца левой руки (большой, указательный и средний) так, чтобы они находились под прямым углом друг к другу. Большой палец, направленный в этом случае в сторону, укажет направление силы Лоренца, указательный (направлен вниз) – направление магнитного поля (от северного полюса к южному), а средний, расположенный перпендикулярно в сторону от большого, – направление тока в проводнике.

Применение для силы Лоренца

Формулу расчёта силы Лоренца можно увидеть на рисунке ниже.

Заключение

Разобравшись один раз с правилами правой и левой руки, уважаемый читатель поймёт, насколько легко ими пользоваться. Ведь они заменяют знание многих законов физики, в частности, электротехники. Главное здесь – не забыть направление течения тока.

При помощи рук можно определить множество различных параметров

Надеемся, что сегодняшняя статья была полезна нашим уважаемым читателям. При возникновении вопросов их можно оставить в обсуждениях ниже. Редакция Seti.guru с удовольствием на них ответит в максимально сжатые сроки. Пишите, общайтесь, спрашивайте. А мы, в свою очередь, предлагаем вам посмотреть короткое видео, которое поможет более полно понять тему нашего сегодняшнего разговора.

Правило правой и левой руки в физике: применение в повседневной жизни

Вступив во взрослую жизнь, мало кто вспоминает школьный курс физики. Однако иногда необходимо покопаться в памяти, ведь некоторые знания, полученные в юности, могут существенно облегчить запоминание сложных законов. Одним из таких является правило правой и левой руки в физике. Применение его в жизни позволяет понять сложные понятия (к примеру, определить направление аксиального вектора при известном базисном). Сегодня попробуем объяснить эти понятия, и как они действуют языком, доступным простому обывателю, закончившему учёбу давно и забывшему ненужную (как ему казалось) информацию.

Формулировка правила буравчика

Пётр Буравчик – это первый физик, сформулировавший правило левой руки для различных частиц и полей. Оно применимо как в электротехнике (помогает определить направление магнитных полей), так и в иных областях. Оно поможет, к примеру, определить угловую скорость.

Правило буравчика (правило правой руки) – это название не связано с фамилией физика, сформулировавшего его. Больше название опирается на инструмент, имеющий определённое направление шнека. Обычно у буравчика (винта, штопора) т.н. резьба правая, входит в грунт бур по часовой стрелке. Рассмотрим применение этого утверждения для определения магнитного поля.

Нужно сжать правую руку в кулак, подняв вверх большой палец. Теперь немного разжимаем остальные четыре. Именно они указывают нам направление магнитного поля. Если же говорить кратко, правило буравчика имеет следующий смысл – вкручивая буравчик вдоль направления тока, увидим, что рукоять вращается по направлению линии вектора магнитной индукции.

Правило правой и левой руки: применение на практике

Рассматривая применение этого закона, начнём с правила правой руки. Если известно направление вектора магнитного поля, при помощи буравчика можно обойтись без знания закона электромагнитной индукции. Представим, что винт передвигается вдоль магнитного поля. Тогда направление течения тока будет «по резьбе», то есть вправо.

Применение правила правой руки для соленоида

Обратим внимание на постоянный управляемый магнит, аналогом которого является соленоид. По своей сути он является катушкой с двумя контактами. Известно, что ток движется от «+» к «-». Опираясь на эту информацию, берём в правую руку соленоид в таком положении, чтобы 4 пальца указывали направление течения тока. Тогда вытянутый большой палец укажет вектор магнитного поля.

Правило левой руки: что можно определить, воспользовавшись им

Не стоит путать правила левой руки и буравчика – они предназначены для совершенно разных целей. При помощи левой руки можно определить две силы, вернее, их направление. Это:

  • сила Лоренца,
  • сила Ампера.

Попробуем разобраться, как это работает.

Правило левой руки для силы Ампера: в чём оно заключается

Расположим левую руку вдоль проводника так, чтобы пальцы были направлены в сторону протекания тока. Большой палец будет указывать в сторону вектора силы Ампера, а в направлении руки, между большим и указательным пальцем будет направлен вектор магнитного поля. Это и будет правило левой руки для силы ампера, формула которой выглядит так:

Правило левой руки для силы Лоренца: отличия от предыдущего

Располагаем три пальца левой руки (большой, указательный и средний) так, чтобы они находились под прямым углом друг к другу. Большой палец, направленный в этом случае в сторону, укажет направление силы Лоренца, указательный (направлен вниз) – направление магнитного поля (от северного полюса к южному), а средний, расположенный перпендикулярно в сторону от большого, – направление тока в проводнике.

Формулу расчёта силы Лоренца можно увидеть на рисунке ниже.

Заключение

Разобравшись один раз с правилами правой и левой руки, уважаемый читатель поймёт, насколько легко ими пользоваться. Ведь они заменяют знание многих законов физики, в частности, электротехники. Главное здесь – не забыть направление течения тока.

Надеемся, что сегодняшняя статья была полезна нашим уважаемым читателям. При возникновении вопросов их можно оставить в обсуждениях ниже. Редакция Seti.guru с удовольствием на них ответит в максимально сжатые сроки. Пишите, общайтесь, спрашивайте. А мы, в свою очередь, предлагаем вам посмотреть короткое видео, которое поможет более полно понять тему нашего сегодняшнего разговора.

Загрузка…

Правило левой руки — это… Что такое Правило левой руки?

Правило левой руки

Прямой провод с током. Ток (I), протекая через провод, создаёт магнитное поле (B) вокруг провода.

Пра́вило бура́вчика (также, правило правой руки) — мнемоническое правило для определения направления вектора угловой скорости, характеризующей скорость вращения тела, а также вектора магнитной индукции B или для определения направления индукционного тока.

Правило правой руки

Правило буравчика: «Если направление поступательного движения буравчика (винта) с правой нарезкой совпадает с направлением тока в проводнике, то направление вращения ручки буравчика совпадает с направлением вектора магнитной индукции».

Определение направления магнитного поля вокруг проводника

Правило правой руки: «Если большой палец правой руки расположить по направлению тока, то направление обхвата проводника четырьмя пальцами покажет направление линий магнитной индукции».

Для соленоида оно формулируется так: «Если обхватить соленоид ладонью правой руки так, чтобы четыре пальца были направлены вдоль тока в витках, то отставленный большой палец покажет направление линий магнитного поля внутри соленоида».

Правило левой руки

Для определения направления силы Ампера обычно используют правило левой руки: «Если расположить левую руку так, чтобы линии индукции входили в ладонь, а вытянутые пальцы были направлены вдоль тока, то отведенный большой палец укажет направление силы, действующей на проводник.»

Wikimedia Foundation. 2010.

  • Правило знаков Декарта
  • Правило октетов

Смотреть что такое «Правило левой руки» в других словарях:

  • ПРАВИЛО ЛЕВОЙ РУКИ — ПРАВИЛО ЛЕВОЙ РУКИ, см. ПРАВИЛА ФЛЕМИНГА …   Научно-технический энциклопедический словарь

  • правило левой руки — — [Я. Н.Лугинский, М.С.Фези Жилинская, Ю.С.Кабиров. Англо русский словарь по электротехнике и электроэнергетике, Москва, 1999 г.] Тематики электротехника, основные понятия EN Fleming s ruleleft hand ruleMaxwell s rule …   Справочник технического переводчика

  • правило левой руки — kairės rankos taisyklė statusas T sritis fizika atitikmenys: angl. Fleming’s rule; left hand rule vok. Linke Hand Regel, f rus. правило левой руки, n; правило Флеминга, n pranc. règle de la main gauche, f …   Fizikos terminų žodynas

  • Правило правой руки — Прямой провод с током. Ток (I), протекая через провод, создаёт магнитное поле (B) вокруг провода. Правило буравчика (также, правило правой руки)  мнемоническое правило для определения направления вектора угловой скорости, характеризующей скорость …   Википедия

  • Левой руки правило — Прямой провод с током. Ток (I), протекая через провод, создаёт магнитное поле (B) вокруг провода. Правило буравчика (также, правило правой руки)  мнемоническое правило для определения направления вектора угловой скорости, характеризующей скорость …   Википедия

  • Правило левой ноги — Жарг. шк. Шутл. 1. Правило левой руки. 2. Любое невыученное правило. (Запись 2003 г.) …   Большой словарь русских поговорок

  • ЛЕВОЙ РУКИ ПРАВИЛО — определяет направление силы, которая действует на находящийся в магнитном поле проводник с током. Если ладонь левой руки расположить так, чтобы вытянутые пальцы были направлены по току, а силовые линии магнитного поля входили в ладонь, то… …   Большой Энциклопедический словарь

  • ЛЕВОЙ РУКИ ПРАВИЛО — для определения направления механич. силы, к рая действует на находящийся в магн. поле проводник с током: если расположить левую ладонь так, чтобы вытянутые пальцы совпадали с направлением тока, а силовые линии магн. поля входили в ладонь, то… …   Физическая энциклопедия

  • левой руки правило — определяет направление силы, которая действует на находящийся в магнитном поле проводник с током. Если ладонь левой руки расположить так, чтобы вытянутые пальцы были направлены по току, а силовые линии магнитного поля входили в ладонь, то… …   Энциклопедический словарь

  • ЛЕВОЙ РУКИ ПРАВИЛО — определяет направление силы, к рая действует на находящийся в магн. поле проводник с током. Если ладонь левой руки расположить так, чтобы вытянутые пальцы были направлены по току, а силовые линии магн. поля входили в ладонь, то отставленный… …   Естествознание. Энциклопедический словарь


Правило правой руки — это… Что такое Правило правой руки?

Правило правой руки

Прямой провод с током. Ток (I), протекая через провод, создаёт магнитное поле (B) вокруг провода.

Пра́вило бура́вчика (также, правило правой руки) — мнемоническое правило для определения направления вектора угловой скорости, характеризующей скорость вращения тела, а также вектора магнитной индукции B или для определения направления индукционного тока.

Правило правой руки

Правило буравчика: «Если направление поступательного движения буравчика (винта) с правой нарезкой совпадает с направлением тока в проводнике, то направление вращения ручки буравчика совпадает с направлением вектора магнитной индукции».

Определение направления магнитного поля вокруг проводника

Правило правой руки: «Если большой палец правой руки расположить по направлению тока, то направление обхвата проводника четырьмя пальцами покажет направление линий магнитной индукции».

Для соленоида оно формулируется так: «Если обхватить соленоид ладонью правой руки так, чтобы четыре пальца были направлены вдоль тока в витках, то отставленный большой палец покажет направление линий магнитного поля внутри соленоида».

Правило левой руки

Для определения направления силы Ампера обычно используют правило левой руки: «Если расположить левую руку так, чтобы линии индукции входили в ладонь, а вытянутые пальцы были направлены вдоль тока, то отведенный большой палец укажет направление силы, действующей на проводник. »

Wikimedia Foundation. 2010.

  • Правило правого винта
  • Правило семидесяти

Смотреть что такое «Правило правой руки» в других словарях:

  • ПРАВИЛО ПРАВОЙ РУКИ — ПРАВИЛО ПРАВОЙ РУКИ, определяет направление индукционного тока в проводнике, движущемся в магнитном поле. Если ладонь правой руки расположить так, чтобы в нее входили силовые линии магнитного поля, а отогнутый большой палец направить по движению… …   Энциклопедический словарь

  • ПРАВИЛО ПРАВОЙ РУКИ — ПРАВИЛО ПРАВОЙ РУКИ, см. ПРАВИЛА ФЛЕМИНГА …   Научно-технический энциклопедический словарь

  • правило правой руки — — [Я.Н.Лугинский, М.С.Фези Жилинская, Ю.С.Кабиров. Англо русский словарь по электротехнике и электроэнергетике, Москва, 1999 г.] Тематики электротехника, основные понятия EN Fleming s ruleright hand rule …   Справочник технического переводчика

  • правило правой руки — [right hand rule] удобное для запоминания правило для определения направления индукционного тока в проводнике, движущегося в магнитном поле: если расположить правую ладонь так, чтобы отставлtysq большой палец совпадал с направлением движения… …   Энциклопедический словарь по металлургии

  • правило правой руки — dešinės rankos taisyklė statusas T sritis fizika atitikmenys: angl. right hand rule vok. Rechte Hand Regel, f rus. правило правой руки, n pranc. règle de la main droite, f …   Fizikos terminų žodynas

  • Правило левой руки — Прямой провод с током. Ток (I), протекая через провод, создаёт магнитное поле (B) вокруг провода. Правило буравчика (также, правило правой руки)  мнемоническое правило для определения направления вектора угловой скорости, характеризующей скорость …   Википедия

  • Правой руки правило — Прямой провод с током. Ток (I), протекая через провод, создаёт магнитное поле (B) вокруг провода. Правило буравчика (также, правило правой руки)  мнемоническое правило для определения направления вектора угловой скорости, характеризующей скорость …   Википедия

  • ПРАВОЙ РУКИ ПРАВИЛО — определяет направление индукционного тока в проводнике, движущемся в магнитном поле. Если ладонь правой руки расположить так, чтобы в нее входили силовые линии магнитного поля, а отогнутый большой палец направить по движению проводника, то 4… …   Большой Энциклопедический словарь

  • ПРАВОЙ РУКИ ПРАВИЛО — для определения направления индукц. тока в проводнике, движущемся в магн. поле: если расположить правую ладонь так, чтобы отставленный большой палец совпадал с направлением движения проводника, а силовые линии магн. поля входили в ладонь, то… …   Физическая энциклопедия

  • правой руки правило — определяет направление индукционного тока в проводнике, движущемся в магнитном поле. Если ладонь правой руки расположить так, чтобы в неё входили силовые линии магнитного поля, а отогнутый большой палец направить по движению проводника, то… …   Энциклопедический словарь

Книги

  • Экзамен в ГИБДД. Категории «А», «В» . Особая система запоминания на длительный период, А.И. Копусов-Долинин. В данном пособии развернутые ответы, с использованием дидактических приемов и элементов транспортной психологии, позволяют упростить понимание и запоминание Правил дорожного движения и основ… Подробнее  Купить за 262 руб
  • Экзамен в ГИБДД. Категории А, В. Экзаменационные билеты ГИБДД с комментариями правильных ответов (+CD-ROM), А. И. Копусов-Долинин. В данном пособии развернутые ответы, с использованием дидактических приемов и элементов транспортной психологии, позволяют упростить понимание и запоминание Правил дорожного движения и основ… Подробнее  Купить за 228 руб
  • Готовимся к экзамену в ГИБДД. Категории «А», «В», Копусов-Долинин А.И.. В данном пособии развернутые ответы, с использованием дидактических приемов и элементов транспортной психологии, позволяют упростить понимание и запоминание Правил дорожного движения и основ… Подробнее  Купить за 198 руб
Другие книги по запросу «Правило правой руки» >>

Правило левой руки: примеры задач, формулы, объяснение

В физике и электротехнике приходится часто решать задачи, где требуется рассчитать электрические показатели магнитной индуктивности, по отношению к электротоку и наоборот. Поля и силы сориентированы определенным образом, поэтому и сформировались правило Буравчика и правило левой руки. С их участием возможно установить курс векторов, влияние магнитных полей и прочие данные, используемые в расчетах.

История открытия правила Буравчика

В 19-м веке была обнаружена связь между магнетизмом и электричеством. В это же время было сформировано понятие магнитного поля. Впервые оно было обнаружено датским ученым-физиком Х. Эрстедом.

После этого открытия, ученые ряда стран провели многочисленные эксперименты, которые установили широкий спектр действия поля, нередко выходящий за рамки исследуемого объекта. Было открыто и его круговое вращение.

В дальнейшем, исследования перешли в сферу изучения вопроса – в каких направлениях действует магнетизм. Выяснилось, что его влияние может быть разносторонним, и меняется от того, каким образом располагаются полюса и силы, оказывающие влияние на проводник.

По результатам экспериментов было открыто и оформлено правило левой и правой руки. Первым каноном выявляется направленность сил, влияющих на проводящий материал, а вторым – направленность магнитных линий.

С целью полного отображения было принято специальное определение и другие обозначения. Отображение поля выполняется в виде концентрических линий. Чем чаще они расположены относительно друг друга, тем выше сила действующего поля. Каждая из них получается замкнутой и не пересекается с соседними. Если узнать их направленность, можно установить, куда смотрит вектор магнитной индукции. Возможно и обратное действие, поскольку направление вектора будет соприкасаться с каждой точкой этих линий.

Проведенные опыты позволили сформулировать и закон Буравчика. Когда он вкручивается, резьба будет двигаться по часовой стрелке, то есть вправо. В таком же направлении осуществляется движение силовых магнитных линий. Правило левой руки дополняет правило Буравчика, устанавливая направленность силы, действующей на электрический провод.

Правило левой руки

Если определять физические величины по правилу левой руки, то ее ладонь располагается в таком положении, что четыре пальца направлены вперед, а большой отвернут в бок. Прямые пальцы указывают в сторону направления тока, а оттопыренный большой – направление устремления вектора приложенных усилий. При этом, направление индукции заходит и упирается в ладошку сверху под углом девяносто градусов.

Что определяет закон

По итогам выполнения многочисленных экспериментальных опытов было выведено определение, которое впоследствии стало именоваться правилом левой руки. Оно связало между собой направленности электротока и концентрических линий, а также влияние на проводящий материал силы магнетических полей. Живой пример отражен на картинке, где хорошо видно взаимодействие физических составляющих. Направленность силовых линий и функционирующего магнитного поля не совпадают, их действие направлено в совершенно разные места.

Когда направленность электротока и проводника будет совмещаться с линиями, то силовое влияние на проводящий материал в данном случае отсутствует. В результате, указанный постулат перестанет работать.

Сила Лоренца применение и формула

Действие электромагнитных полей порождает возникновение точечной заряженной частицы, на который воздействуют силы электрического и магнитного характера. В скомбинированном виде они получили наименование силы Лоренца.

Таким образом, сила Лоренца воздействует на любую частицу с зарядом, падающую с определенной быстротой в магнетическом поле. Степень влияния связана с электрическим зарядом частицы (q), показателем магнитной индукции (В) и быстротой падения частицы (V).

На основании полученных данных голландским ученым Хендриком Лоренцем была выведена формула: FL = |q|x V x B x sinα. Все условные обозначения приведены на рисунке.

В практической деятельности сила Лоренца получила применение в следующих областях:

  • Кинескопы – электронно-лучевые или телевизионные трубки. В этих устройствах электроны, летящие в направлении экрана, отклоняются магнитным полем, которое создают специальные катушки.
  • Масс-спектрографы. Определяют массы заряженных частиц, путем разделения их по удельным зарядам. Вакуумная камера помещается в магнитном поле. Заряженный частицы ускоряясь, двигаются по дуге и оставляют след на фотопластинке. Па радиусу траектории вначале определяется удельный заряд, на основании которого вычисляется и масса частицы.
  • Циклотрон. Ускоряет заряженные частицы. Ускорение происходит под действием силы Лоренца, после чего траектория частиц сохраняется за счет магнитного поля. Прибор давно начали использовать в медицинских исследованиях с применением радионуклидных фармацевтических препаратов.
  • Магнетрон. Электронная лампа высокой мощности для генерации микроволн, возникающих при взаимодействии электронного потока и магнитного поля. Используется с современных радиолокационных устройствах.

Сила ампера – формула

Сила Ампера непосредственно воздействует на проводник с током, расположенный внутри поля. Совсем кратко она выражается представленной формулой:

F = I x B x L x sinα, где F является силой Ампера, I – сила тока в проводнике, L – отрезок проводника, находящийся под действием магнитного поля, α – угол между направлением тока и вектором магнитной индукции.

Максимальное значение сила Ампера принимает, когда угол α становится равным 90 градусов. Единицей измерения служит ньютон (Н).

Определение направления силы Ампера выполняется с помощью правила левой руки. Ладонь смотрит вверх, четыре пальца направлены в сторону вектора движения тока. Вектор магнитной индукции перпендикулярен ладони и входит в нее. Направление силы Ампера совпадает с большим пальцем, отогнутым в сторону.

Направлением электрического тока условно считается движение от заряда с плюсом к заряду с минусом.

Примеры задач в физике электротехнике

В качестве примеров будут рассмотрены задачи, связанные с силой Ампера. Примеры решений специфические, но сам метод решения довольно простой.

Задача № 1

Исходные данные для выполнения: длина проводника – 20 см, сила тока, протекающая в нем – 300 мА, угол между проводником и вектором магнитной индукции – 45о. Величина магнитной индукции – 0,5 Тл.

Требуется найти силу однородного магнитного поля, воздействующую на проводник.

Решение: необходимо применять основную формулу – Fa = B x I x L x sinα.  Подставив нужные значения, получаем: Fa = 0,5 Тл х 0,3А х 0,2 м х (√2/2) = 0,03 Н.

Задача № 2

Исходные данные для решения: Проводник помещен в магнитное поле, индукция которого составляет 10 Тл. Сила действия магнитного поля перпендикулярна проводнику и составляет 20 Н. Сила тока, протекающего в проводнике – 5А.

Требуется вычислить длину отрезка проводника.

Решение: за основу берется формула Fa = B x I x L x sinα. Длина проводника определяется следующим образом: L = Fa/(B x I x sinα). Поскольку sinα = 1, получаем: L = Fa/(B x I). Остается подставить нужные значения и получить результат: L = 20Н/(10Тл х 5А) = 0,4 м.

Существуют аналогичные задачи с использованием силы Лоренца. Наглядно рассматрим два примера, которые решаются просто и понятно.

Задача № 3

Исходные данные для выполнения: в магнитном поле с индукцией 0,3 Тл передвигается заряд величиной 0,005 Кл со скоростью 200 м/с. Угол между направлением заряда и вектором магнитной индукции – 45º.

Определяется: величина силы, воздействующей на заряд.

Решение: используется основная формула FL = |q| x V x B x sinα. Подставляя исходные данные, получаем следующее: FL = 0,005Кл х 200м/с х 0,3Тл х sin 45о = (0,3 х √2)/2 = 0,21Н.

Задача № 4

Исходные данные для решения: заряженная частица величиной 0,5 мКл движется в магнитном поле с индукцией 2 Тл. Сила, действующая на заряд со стороны магнитного поля – 32 Н. Направление движения частицы и вектор магнитного поля расположены под углом 90º.

Требуется определить: скорость движения заряженной частицы.

Решение: изначально берется формула FL = |q| x V x B x sinα. Поскольку sinα = 1, она приобретает следующий вид: FL = |q| x V x B. Для определения скорости нужно: V = FL/(|q| x B). Остается вставить исходные данные: V = 32Н/(5*10-4Кл х 2Тл) = 32000 м/с.

Как связано магнитное поле с Буравчиком и руками

Рассматривая движение полей токовой и магнитной природы, можно легко проследить взаимную связь правила Буравчика с канонами правой и левой руки. Для более качественного сравнения этих понятий, следует рассмотреть, что они представляют собой по отдельности.

Закон Буравчика точно устанавливает направленность напряженности, вызываемой магнитными полями. При этом само поле должно размещаться в прямом направлении по отношению к проводящему материалу с электротоком.

Для более полного представления берется штопор с правой резьбой и ввинчивается по часовой стрелочке в сторону протекания тока. Направленность магнетических полей соответствует правостороннему движению штопорной рукоятки.

Правило правой руки может рассматриваться в двух вариантах. В одном из них пальцы, согнутые в кулак, охватывают неподвижный токопроводник. Они обозначают, в какую сторону смотрит вектор магнитных линий, который, как и у рукоятки Буравчика, будет по ходу часовой стрелки. Самый крупный палец отступает на 90º и показывает, в какую сторону движется ток.

Если же токопровод движется, то правая рука размещается иным способом. Ладонь устанавливается между северным и южным полюсами так, чтобы она была в перпендикулярности с силовыми линиями, проходящими через нее. Крупный палец фиксируется в вертикальном положении и показывает в сторону направленного движения проводника. Оставшиеся пальцы, протянутые вперед, смотрят в ту же сторону, что и индукционный ток. Эта установка нашла свое применение в расчетах катушечных соленоидов, оказывающих воздействие на физические свойства тока.

Отделяя друг от друга правило правой и левой руки, их физика показывает, что второй вариант, используемый в расчетах, действует по-другому. Левая ладошка размещается в таком положении, чтобы четыре пальца были направлены в сторону тока, продвигающегося по проводнику. Магнитные линии, перемещаясь от одного полюса к другому, заходят в ладошку под 90 градусов. Оттопыренный крупный палец смотрит в ту же сторону, что и сила, воздействующая на токопроводник.

Магнитное поле в соленоиде

Законы правой и левой руки в физике, разобранные ранее, на сто процентов действуют лишь для прямолинейных токопроводников. Однако, довольно часто провода используются в виде катушек или соленоидов, где все процессы происходят по-другому.

Известно, что под влиянием электротока, проходящего внутри провода, образуется круговое магнитное поле. В катушечных соленоидах провод сворачивается в виде колец и многократно оборачивается вокруг сердечника. Здесь правило Буравчика в чистом виде уже не функционирует, поскольку происходит существенное усиление магнетических полей. Но, его условные линии направлены так же, как и у постоянных магнитов, поэтому в таком случае возможно применение правила правой руки.

Сначала соленоид охватывается так, чтобы самый крупный палец смотрел в направлении северного магнитного полюса. Он же отображает направление вектора магнитной индукции. Остальные четыре пальчика располагаются в направлении протекания тока.

Возможно частично применить и правило штопора. Его следует установить и закручивать в направлении тока, тогда острие станет перемещаться в направлении электромагнитной индукции. Эта установка действует не только для всей катушки, но и для одиночного витка.

Определение направления тока Буравчиком

Определить, куда движется ток, возможно посредством рук и Буравчика. В последнем случае должно быть известно, куда направляется магнитный поток – вектор В. Зная это направления, остается мысленно крутить штопор по часовой стрелке. Он будет постепенно передвигаться вперед, в ту же сторону, что и электроток. Эта формулировка действует для неподвижного прямого токопроводника.

Что связано с левой рукой

В целях правильного использования физических понятий, нельзя смешивать друг с другом Буравчик и левую руку. В одном случае определяются направленности магнетических линий и электротока, а второй вариант заключается в установлении силы, оказывающей влияние на проводящий материал.

В отдельных случаях не все точно знают, как пользоваться «левой рукой». Но что бы ни говорили, все очень просто. Выпрямленная рука размещается ладонью вверх между двумя полюсами вдоль токопроводника. Магнитные линии условно пронзают открытую ладошку. Все пальцы направлены по ходу течения тока, а оттопыренный самый крупный палец совпадает с направлением вектора силы, которая получила название силы Ампера.

С помощью левой руки можно определить не только силу Ампера, но и силу Лоренца. В последнем случае – это способ, применяемый к отдельным заряженным частицам. Его смысл состоит в расположении пальцев левой ладони в направлении движения заряда. Когда вектор В будет проходить сквозь ладонь, большой палец будет смотреть в сторону действия силы Ампера. При наличии отрицательного заряда, пальцы должны располагаться в противоположном направлении.

Выводы

Научиться пользоваться всеми способами совсем несложно, главное – знать объяснение физических принципов каждого из них. Мысленное использование Буравчика приносить в процессе обучения определенное облегчение в практическом выполнении расчетов и других действий. Все эти правила успешно применяются специалистами во многих областях электротехники.

Видеоурок

Правило буравчика, правой и левой руки

В физике и электротехнике широко используются различные приемы и способы, позволяющие определить одну из характеристик магнитного поля – направленность напряженности. С этой целью используется закон буравчика, правой и левой руки. Данные способы позволяют получить довольно точные результаты.

Правило буравчика и правой руки

Закон буравчика используется для определения направленности напряженности магнитного поля. Оно работает при условии прямолинейного расположения магнитного поля, относительно проводника с током.

Это правило заключается в совпадении направленности магнитного поля с направленностью рукоятки буравчика, при условии вкручивания буравчика с правой нарезкой в направлении электрического тока. Данное правило применяется и для соленоидов. В этом случае, большой палец, оттопыренный на правой руке, указывает направление линий магнитной индукции. При этом, соленоид обхватывается так, что пальцы указывают направление тока в его витках. Обязательным условием является превышение длиной катушки ее диаметра.

Правило правой руки противоположно правилу буравчика. При обхватывании исследуемого элемента, пальцы в сжатом кулаке указывают направление магнитных линий. При этом, учитывается поступательное движение по направлению магнитных линий. Большой палец, который отогнут на 90 градусов по отношению к ладони, указывает направление тока.

При движущемся проводнике, силовые линии перпендикулярно входят в ладонь. Большой палец руки вытянут перпендикулярно, и указывает направление движения проводника. Оставшиеся четыре оттопыренных пальца, расположены в направлении индукционного тока.

Правило левой руки

Среди таких способов, как правило буравчика, правой и левой руки, следует отметить правило левой руки. Для того, чтобы это правило работало, необходимо расположить левую ладонь таким образом, чтобы направление четырех пальцев было в сторону электрического тока в проводнике. Индукционные линии входят в ладонь перпендикулярно под углом 90. Большой палец отогнут, и указывает направление силы, действующей на проводник. Обычно, этот закон применяется, когда нужно определить направление отклонения проводника. В данной ситуации проводник располагается между двумя магнитами и по нему пропущен электрический ток.

Правило левой руки формулируется еще и таким образом, что четыре пальца на левой руке располагаются в направлении, куда движутся положительные или отрицательные частицы электрического тока. Индукционные линии, как и в других случаях, должны перпендикулярно располагаться относительно ладони и входить в нее. Большой оттопыренный палец указывает на направление силы Ампера или Лоренца.

Правило правой руки | PASCO

Правило правой руки в физике

Правило правой руки — это мнемоника руки, используемая в физике для определения направления осей или параметров, указывающих в трех измерениях. Правило правой руки, изобретенное в XIX веке британским физиком Джоном Амброузом Флемингом для применения в электромагнетизме часто используется для определения направления третьего параметра, когда известны два других (магнитное поле, ток, магнитная сила). Есть несколько вариантов правила правой руки, которые объясняются в этом разделе.

Когда проводник, такой как медный провод, движется через магнитное поле (B), в проводнике индуцируется электрический ток (I). Это явление известно как закон индукции Фарадея. Если проводник перемещается внутри магнитного поля, то существует соотношение между направлениями движения (скорости) проводника, магнитного поля и индуцированного тока. Мы можем использовать правило правой руки Флеминга исследовать закон индукции Фарадея, который представлен уравнением:

ЭДС = индуцированная ЭДС (V или J / C)
N = количество витков катушки
Δ𝚽 B = изменение магнитного потока (Тм2)
Δ t = изменение во времени (с)

Поскольку оси x, y и z перпендикулярны друг другу и образуют прямые углы, правило правой руки можно использовать для визуализации их выравнивание в трехмерном пространстве.Чтобы использовать правило правой руки, начните с создания L-образной формы с помощью большого пальца правой руки, указателя и середины. Палец. Затем переместите средний палец внутрь к ладони так, чтобы он был перпендикулярен указательным и большим пальцам. Твоя рука должно выглядеть примерно так:

На схеме выше большой палец совмещен с осью z, указательный палец — с осью x, а средний палец — с осью y.

Беспроводная интеллектуальная тележка

Один из лучших способов помочь учащимся обрести уверенность в использовании правила правой руки — это наглядная демонстрация, которая помогает им распознать и исправить свои неправильные представления об ортогональных отношениях и системах координат.

Многие учителя используют вращающуюся линейку, чтобы показать, что объект, который кажется вращающимся «по часовой стрелке» с точки зрения одного ученика, также кажется вращающимся «против часовой стрелки», если смотреть с другой точки зрения. Использование динамической тележки для обучения правилу правой руки позволяет преподавателям продемонстрировать как проблему с помощью терминологии «по часовой стрелке», так и «против часовой стрелки», а также решение, которое обеспечивают правило правой руки и оси вращения. С беспроводной интеллектуальной тележкой преподаватели могут использовать 3-осевой гироскоп и фиксированную систему координат для создания увлекательных демонстраций вращательного движения.Ознакомьтесь с полной демонстрацией здесь.

Правило правой руки для магнетизма


Движущиеся заряды

Заряженная частица — это частица с электрическим зарядом. Когда неподвижная заряженная частица существует в магнитном поле, она не испытать магнитную силу; однако, как только заряженная частица движется в магнитном поле, она испытывает наведенное магнитное поле. сила, которая смещает частицу с ее первоначального пути. Это явление, также известное как сила Лоренца, согласуется с правилом, что утверждает, что «магнитные поля не работают.”Уравнение, используемое для определения величины магнитной силы, действующей на заряженную частицу (q) перемещение магнитного поля (B) со скоростью v под углом θ составляет:

Если скорость заряженной частицы параллельна магнитному полю (или антипараллельна), то силы нет, потому что sin (θ) равен нулю. Когда это происходит, заряженная частица может сохранять прямолинейное движение даже в присутствии сильного магнитного поля.

Плоскость, образованная направлением магнитного поля и скоростью заряженной частицы, расположена под прямым углом к ​​силе.Поскольку сила возникает под прямым углом к ​​плоскости, образованной скоростью частицы и магнитным полем, мы можем использовать правило правой руки, чтобы определить их ориентацию.

Правило правой руки гласит: чтобы определить направление магнитной силы на положительный движущийся заряд, направьте большой палец правой руки в направление скорости (v), указательный палец в направлении магнитного поля (B) и средний палец будут указывать в направление результирующей магнитной силы (F).На отрицательные заряды будет действовать сила в противоположном направлении.

Магнитная сила, индуцированная током: ток в прямом проводе

Обычный ток состоит из движущихся зарядов, которые имеют положительный характер. Когда обычный ток проходит по проводящему проводу, на провод действует магнитное поле, которое его толкает. Мы можем использовать правило правой руки, чтобы определить направление силы, действующей на токоведущий провод. В этой модели ваши пальцы указывают в направлении магнитного поля, а большой палец — в направлении магнитного поля. обычный ток, протекающий через провод, и ваша ладонь указывает направление, в котором провод проталкивается (сила).

Магнитная сила, действующая на провод с током, определяется уравнением:

Когда длина провода и магнитное поле расположены под прямым углом друг к другу, уравнение принимает следующий вид:

F B = магнитная сила (Н)
I = ток (A)
L = длина провода (м)
B = магнитное поле (Тл)

Если рассматривать протекание тока как движение носителей положительного заряда (обычный ток) в приведенном выше image, мы замечаем, что обычный ток движется вверх по странице.Поскольку обычный ток состоит из положительных зарядов, то тот же провод с током также может быть описан как имеющий ток с отрицательным носители заряда движутся вниз по странице. Хотя эти токи движутся в противоположных направлениях, один наблюдается магнитная сила, действующая на провод. Следовательно, сила действует в том же направлении, независимо от того, рассмотрите поток положительных или отрицательных носителей заряда на изображении выше. Применение правила правой руки к направление обычного тока указывает направление магнитной силы, которое должно быть направлено вправо.Когда мы рассматриваем поток отрицательных носителей заряда на изображении выше, правило правой руки указывает на то, что направление силы, которую нужно оставить; однако отрицательный знак меняет результат на противоположный, указывая на то, что направление магнитной силы действительно указывает вправо.

Если мы рассмотрим поток зарядов в двух разных проводах, один с положительными зарядами, текущими вверх по странице, а другой с отрицательными зарядами, текущими вверх по странице, то направление магнитных сил не будет таким же, потому что мы рассматриваем две разные физические ситуации. В первом проводе поток положительных зарядов вверх по странице указывает на то, что по странице стекают отрицательные заряды. Правило правой руки говорит нам, что магнитный сила укажет в правильном направлении. По второму проводу вверх по странице текут отрицательные заряды, которые означает, что положительные заряды стекают по странице. В результате правило правой руки показывает, что магнитная сила указывает в левом направлении.

Токи, индуцированные магнитными полями

В то время как магнитное поле может быть индуцировано током, ток также может быть индуцирован магнитным полем.Мы можем использовать второе правило правой руки, иногда называемое правилом захвата правой руки, для определения направления магнитного поле, созданное током. Чтобы использовать правило захвата правой рукой, направьте большой палец правой руки в направлении течения. течь и скручивай пальцы. Направление ваших пальцев будет отражать направление искривления индуцированного магнитного поля.

Правило захвата правой рукой особенно полезно для решения проблем, связанных с токоведущим проводом или соленоидом. В обеих ситуациях правило захвата правой рукой применяется к двум приложениям закона оборота Ампера, который связывает интегрированное магнитное поле вокруг замкнутого контура к электрическому току, проходящему через плоскость замкнутого контура.

Направление вращения: соленоиды

Когда электрический ток проходит через соленоид, он создает магнитное поле. Чтобы использовать правило захвата правой рукой в проблема с соленоидом, укажите пальцами в направлении обычного тока и оберните пальцы, как будто они были вокруг соленоида. Ваш большой палец будет указывать в направлении силовых линий магнитного поля внутри соленоида. Примечание что силовые линии магнитного поля вне соленоида направлены в противоположном направлении. Они охватывают изнутри, чтобы снаружи соленоида.

Направление вращения: токоведущие провода

Когда электрический ток проходит по прямому проводу, он индуцирует магнитное поле. Чтобы применить правило захвата правой рукой, совместите большой палец с направлением обычного тока (от положительного к отрицательному), и ваши пальцы будут указывать направление магнитных линий потока.

Правило правой руки для крутящего момента


Проблемы с крутящим моментом часто являются самой сложной темой для студентов-первокурсников-физиков.К счастью, есть правило правой руки приложение для крутящего момента. Чтобы использовать правило правой руки в задачах с крутящим моментом, возьмите правую руку и наведите ее на направление вектора положения (r или d), затем поверните пальцы в направлении силы, и большой палец укажет в направлении крутящего момента.

Уравнение для расчета величины вектора крутящего момента для крутящего момента, создаваемого заданной силой:

Когда угол между вектором силы и плечом момента является прямым, синусоидальный член становится 1 и уравнение становится:

F = сила (Н)
𝜏 = крутящий момент (Нм)
r = расстояние от центра до линии действия (м)

Положительный и отрицательный крутящие моменты

Моменты, возникающие против часовой стрелки, являются положительными.В качестве альтернативы крутящие моменты, возникающие в по часовой стрелке — отрицательные моменты. Так что же произойдет, если ваша рука укажет на бумагу или из нее? Крутящие моменты, которые лицевой стороной из бумаги следует анализировать положительный крутящий момент, в то время как крутящий момент, направленный внутрь, следует анализировать. как отрицательные моменты.

Правило правой руки для перекрестного произведения


Перекрестное произведение или векторное произведение создается, когда упорядоченная операция выполняется над двумя векторами, a и b. В векторное произведение векторов a и b перпендикулярно как a, так и b и перпендикулярно плоскости, которая его содержит.С есть два возможных направления для перекрестного произведения, для определения направления следует использовать правило правой руки вектора кросс-произведения.

Например, векторное произведение векторов a и b можно представить с помощью уравнения:

(произносится как «крест б»)

Чтобы применить правило правой руки к перекрестным произведениям, выровняйте пальцы и большой палец под прямым углом. Затем укажите свой индекс палец в направлении вектора a и средний палец в направлении вектора b.Ваш большой палец правой руки укажет в направлении векторного произведения a x b (вектор c).

Правило правой руки по закону Ленца


Закон электромагнитной индукции Ленца — еще одна тема, которая часто кажется нелогичной, поскольку требует понимание того, как магнетизм и электрические поля взаимодействуют в различных ситуациях. Закон Ленца гласит, что направление тока, индуцируемого в замкнутом проводящем контуре изменяющимся магнитным полем (закон Фарадея), такова, что вторичное магнитное поле, созданное индуцированным током, противодействует начальному изменению магнитного поля, которое произвело Это.Так что это значит? Давайте разберемся с этим.

Когда магнитный поток через проводник с замкнутым контуром изменяется, он индуцирует ток внутри контура. Индуцированная ток создает вторичное магнитное поле, которое противодействует первоначальному изменению потока, которое инициировало индуцированный ток. Сила магнитного поля, проходящего через катушку из проволоки, определяет магнитный поток. Магнитный поток зависит от сила поля, площадь катушки и относительная ориентация между полем и катушкой, как показано в следующем уравнении.


𝚽 B = магнитный поток (Tm 2 )
B = магнитное поле (Тл)
Θ = угол между полем и нормалью (град.)
A = площадь контура (м 2 )

Чтобы понять, как закон Ленца повлияет на эту систему, нам нужно сначала определить, является ли начальное магнитное поле увеличение или уменьшение силы. Когда северный магнитный полюс приближается к петле, это вызывает существующее магнитное поле. поле для увеличения.Поскольку магнитное поле увеличивается, индуцированный ток и результирующее индуцированное магнитное поле будут противодействовать исходному магнитному полю, уменьшая его. Это означает, что первичное и вторичное магнитные поля будут возникать в противоположные направления. Когда существующее магнитное поле уменьшается, индуцированный ток и результирующее индуцированное магнитное поле поле будет противодействовать исходному, уменьшая магнитное поле, усиливая его. Таким образом, индуцированное магнитное поле будет иметь в том же направлении, что и исходное магнитное поле.

Чтобы применить правило правой руки к закону Ленца, сначала определите, увеличивается ли магнитное поле, проходящее через петлю, или уменьшается. Напомним, что магниты создают силовые линии магнитного поля, которые движутся от северного магнитного полюса в направлении магнитный южный полюс. Если магнитное поле увеличивается, то направление вектора индуцированного магнитного поля будет в обратном направлении. Если магнитное поле в контуре уменьшается, то вектор индуцированного магнитного поля будет происходят в том же направлении, чтобы заменить уменьшение исходного поля.Затем выровняйте большой палец в направлении индуцированное магнитное поле и скрученные пальцы. Ваши пальцы будут указывать в направлении индуцированного тока.

электромагнетизм — правило правой и левой руки Флеминга

Очень жаль, что физика магнетизма обременена несколькими разными * -ручными правилами, и что они используют разные руки. Разберем их:

Флеминг

левая — линейка

дает вам направление силы, действующей на ток, если вы знаете магнитное поле.

Источник изображения

Это правило применяется к двигателям , то есть устройствам, которые используют токи в магнитном поле для создания движения. Это основано на силе Лоренца, $$ \ mathbf F = q \ mathbf v \ times \ mathbf B, $$ в котором ток идет со скоростью заряда, а индуцированное движение идет вдоль направления силы. Вот почему это правило совпадает с правилом левой руки, используемым в перекрестных произведениях в целом.


Флеминг

правая линейка

гораздо реже используется в физике (хотя я не могу говорить о том, как работают инженеры).Это относится к генераторам , то есть устройствам, которые используют движение в магнитном поле для генерации токов. Это опять же основано на перекрестном произведении силы Лоренца, за исключением того, что теперь скорость заряда определяется движением объекта, а сила вдоль провода — это то, что устанавливает ток. Это означает, что вы поменяли местами средний палец на большой в соответствии с правилом левой руки Флеминга, что вы можете сделать, сохраняя (расплывчатые) назначения на «движение» и «текущую» и меняя руки.

Источник изображения

Мне очень не нравится это соглашение, и я бы посоветовал вам забыть о нем все, кроме того факта, что он существует и его следует избегать. В любой ситуации, когда вам это нужно, вы можете просто использовать силу Лоренца, чтобы выяснить, в каком направлении пойдет ток.


Правый

Ампера — линейка

совсем другое дело, и он дает вам магнитное поле, создаваемое прямым проводом. 3} $$ Опять же, это перекрестное произведение, которое определяет направление поля, и вы должны сами убедиться, что оно работает, как показано на рисунке.


Как видите, правила совсем другие. Поэтому крайне важно, чтобы, если вы хотите использовать их в качестве мнемоники, вы правильно усвоили, какой из них применяется, и что вы применяете их правильно. (Нет смысла учить, какой рукой использовать, если вы, например, поменяете местами указательный и средний пальцы.)

Однако самое важное, что нужно усвоить, — это закон силы Лоренца, который основан на правиле левой руки (заряд-время-ток на среднем пальце, поле на указательном, сила на большом пальце), обозначенное перекрестное произведение.Это, по сути, безотказно, если вы применяете его правильно, и меньше подвержено путанице с другими правилами.

Правосторонняя линейка

Левая ориентация показана слева, а правая — справа. Использование правой руки.

В математике и физике правило правой руки является общей мнемоникой для понимания условных обозначений для векторов в 3 измерениях. Он был изобретен для использования в электромагнетизме британским физиком Джоном Амброузом Флемингом в конце 19 века.

При выборе трех векторов, которые должны быть под прямым углом друг к другу, есть два различных решения, поэтому при выражении этой идеи в математике необходимо устранить двусмысленность того, какое решение имеется в виду.

Есть вариации мнемоники в зависимости от контекста, но все вариации связаны с одной идеей выбора соглашения.

Направление, связанное с упорядоченной парой направлений

Одна форма правила правой руки используется в ситуациях, когда упорядоченная операция должна выполняться над двумя векторами a и b , результатом которых является вектор c перпендикулярно как a , так и b .Самый распространенный пример — векторное векторное произведение. Правило правой руки требует следующей процедуры выбора одного из двух направлений.

  • Когда большой, указательный и средний пальцы расположены под прямым углом друг к другу (указательный палец направлен прямо), средний палец указывает в направлении c , когда большой палец представляет a и указательный палец представляет собой b .

Возможны другие (эквивалентные) назначения пальцев.Например, первый (указательный) палец может представлять a , первый вектор в произведении; второй (средний) палец, b , второй вектор; и большой палец, c , продукт.

Направление, связанное с вращением

Прогнозирование направления поля ( B ), учитывая, что ток I течет в направлении большого пальца.

Другая форма правила правой руки, иногда называемая правилом правой руки , используется в ситуациях, когда вектор должен быть назначен вращению тела, магнитного поля или жидкости.В качестве альтернативы, когда поворот задается вектором, и необходимо понимать, каким образом происходит поворот, применимо правило правого захвата.

Эта версия правила используется в двух дополнительных приложениях закона цепей Ампера:

  1. Электрический ток проходит через соленоид, создавая магнитное поле. Когда вы обхватываете правой рукой соленоид пальцами в направлении обычного тока, ваш большой палец указывает в направлении северного магнитного полюса.
  2. Электрический ток проходит по прямому проводу. Здесь большой палец указывает направление обычного тока (от положительного к отрицательному), а пальцы указывают в направлении магнитных линий потока.

Этот принцип также используется для определения направления вектора крутящего момента. Если вы захватите воображаемую ось вращения силы вращения так, чтобы ваши пальцы указывали в направлении силы, то вытянутый большой палец указывает в направлении вектора крутящего момента.

Правило захвата правой рукой — это соглашение, полученное из правила правостороннего захвата векторов. При применении правила к току в прямом проводе, например, направление магнитного поля (против часовой стрелки, а не по часовой стрелке, если смотреть с кончика большого пальца) является результатом этого соглашения, а не лежащим в основе физическим явлением.

Приложения

Первая форма правила используется для определения направления перекрестного произведения двух векторов.Это приводит к широкому распространению в физике, где бы ни встречается перекрестное произведение. Список физических величин, направления которых связаны правилом правой руки, приведен ниже. (Некоторые из них только косвенно связаны с перекрестными произведениями и используют вторую форму.)

Внешние ссылки

Магнитная сила на движущемся электрическом заряде

Величина магнитной силы

Магнитная сила, действующая на заряженную частицу q, движущуюся в магнитном поле B со скоростью v (под углом θ к B), равна [latex] \ text {F} = \ text {qvBsin} (\ theta) [/ latex].

Цели обучения

Основные выводы

Ключевые моменты
  • Магнитные поля действуют на движущиеся заряженные частицы.
  • Направление магнитной силы [латекс] \ text {F} [/ latex] перпендикулярно плоскости, образованной [латексом] \ text {v} [/ latex] и [латексом] \ text {B} [ / латекс], как определено правилом правой руки.
  • Единица СИ для величины напряженности магнитного поля называется тесла (Тл), что эквивалентно одному Ньютону на амперметр.Иногда вместо этого используется меньшая единица измерения гаусс (10 -4 т).
  • Когда выражение для магнитной силы комбинируется с выражением для электрической силы, комбинированное выражение известно как сила Лоренца.
Ключевые термины
  • Кулоновская сила : электростатическая сила между двумя зарядами, как описано законом Кулона
  • магнитное поле : Состояние в пространстве вокруг магнита или электрического тока, в котором существует обнаруживаемая магнитная сила и где присутствуют два магнитных полюса.
  • тесла : В Международной системе единиц — производная единица плотности магнитного потока или магнитной индукции. Символ: T

Величина магнитной силы

Как один магнит притягивает другой? Ответ основан на том факте, что весь магнетизм основан на токе, потоке заряда. Магнитные поля действуют на движущиеся заряды , и поэтому они действуют на другие магниты, у всех из которых есть движущиеся заряды.

Магнитная сила, действующая на движущийся заряд, — одна из самых фундаментальных известных.Магнитная сила так же важна, как электростатическая или кулоновская сила. Однако магнитная сила более сложна как по количеству влияющих на нее факторов, так и по ее направлению, чем относительно простая кулоновская сила. Величина магнитной силы [латекс] \ text {F} [/ latex] на заряд [латекс] \ text {q} [/ latex], движущийся со скоростью [латекс] \ text {v} [/ latex] в напряженность магнитного поля [латекс] \ text {B} [/ latex] определяется выражением:

[латекс] \ text {F} = \ text {qvBsin} (\ theta) [/ latex]

, где θ — угол между направлениями [латекс] \ text {v} [/ latex] и [latex] \ text {B} [/ latex].Эта формула используется для определения магнитной силы [латекс] \ text {B} [/ latex] в терминах силы, действующей на заряженную частицу, движущуюся в магнитном поле. Единица СИ для величины напряженности магнитного поля называется тесла (Тл) в честь гениального и эксцентричного изобретателя Николы Тесла (1856–1943), который внес большой вклад в наше понимание магнитных полей и их практического применения. Чтобы определить, как тесла соотносится с другими единицами СИ, мы решаем [latex] \ text {F} = \ text {qvBsin} (\ theta) [/ latex] для [latex] \ text {B} [/ latex] :

[латекс] \ text {B} = \ frac {\ text {F}} {\ text {qvsin} (\ theta)} [/ latex]

Поскольку sin θ безразмерен, тесла составляет

[латекс] 1 \ text {T} = \ frac {1 \ text {N}} {\ text {C} * \ text {m} / \ text {s}} = \ frac {1 \ text {N} } {\ text {A} * \ text {m}} [/ latex]

Иногда используется другая меньшая единица измерения, называемая гауссом (G), где 1 G = 10 −4 T.Самые сильные постоянные магниты имеют поля около 2 Тл; сверхпроводящие электромагниты могут достигать 10 Тл или более. Магнитное поле Земли на ее поверхности составляет всего около 5 × 10 −5 Тл, или 0,5 Гс

.

Направление магнитной силы [латекс] \ text {F} [/ latex] перпендикулярно плоскости, образованной [латексом] \ text {v} [/ latex] и [латексом] \ text {B} [ / латекс], как определено правилом правой руки, которое проиллюстрировано на рисунке 1. В нем говорится, что для определения направления магнитной силы на положительный движущийся заряд вы указываете большим пальцем правой руки в направлении [латекса ] \ text {v} [/ latex], пальцы в направлении [latex] \ text {B} [/ latex], а перпендикуляр к ладони указывает в направлении [latex] \ text {F} [ /латекс].Один из способов запомнить это — это одна скорость, и поэтому большой палец представляет ее. Есть много линий поля, поэтому пальцы представляют их. Сила действует в том направлении, в котором вы толкаете ладонью. Сила, действующая на отрицательный заряд, прямо противоположна силе, действующей на положительный заряд.

Правило правой руки : Магнитные поля действуют на движущиеся заряды. Эта сила — одна из самых основных известных. Направление магнитной силы на движущийся заряд перпендикулярно плоскости, образованной v и B, и следует правилу правой руки – 1 (RHR-1), как показано.Величина силы пропорциональна q, v, B и синусу угла между v и B.

Направление магнитной силы: правило правой руки

Правило правой руки используется для определения направления магнитной силы на положительный заряд.

Цели обучения

Примените правило правой руки, чтобы определить направление магнитной силы на заряд

Основные выводы

Ключевые моменты
  • При рассмотрении движения заряженной частицы в магнитном поле релевантными векторами являются магнитное поле B, скорость частицы v и магнитная сила, действующая на частицу F.Все эти векторы перпендикулярны друг другу.
  • Правило правой руки гласит, что для определения направления магнитной силы на положительный движущийся заряд большой палец правой руки должен указывать в направлении v, пальцы в направлении B, а сила (F) равна направлен перпендикулярно ладони правой руки.
  • Направление силы F, действующей на отрицательный заряд, противоположно указанному выше (направлено от тыльной стороны руки).
Ключевые термины
  • правило правой руки : Направление угловой скорости ω и углового момента L, на которое указывает большой палец правой руки, когда вы сгибаете пальцы в направлении вращения.

Направление магнитной силы: правило правой руки

До сих пор мы описали величину магнитной силы, действующей на движущийся электрический заряд, но не направление. Магнитное поле является векторным полем, поэтому приложенная сила будет ориентирована в определенном направлении. Есть умный способ определить это направление, используя не что иное, как вашу правую руку. Направление магнитной силы F перпендикулярно плоскости, образованной v и B , как определено правилом правой руки, которое проиллюстрировано на рисунке выше.Правило правой руки гласит, что: чтобы определить направление магнитной силы на положительный движущийся заряд, point, направьте большой палец правой руки в направлении v , пальцы в направлении B и перпендикулярно ладони указывает в направлении F .

Правило правой руки : Магнитные поля действуют на движущиеся заряды. Эта сила — одна из самых основных известных. Направление магнитной силы на движущийся заряд перпендикулярно плоскости, образованной v и B, и следует правилу правой руки – 1 (RHR-1), как показано.Величина силы пропорциональна q, v, B и синусу угла между v и B.

Один из способов запомнить это — наличие одной скорости, представленной соответственно большим пальцем. Есть много линий поля, обозначенных пальцами соответственно. Сила действует в том направлении, в котором вы толкаете ладонью. Сила, действующая на отрицательный заряд, прямо противоположна силе, действующей на положительный заряд. Поскольку сила всегда перпендикулярна вектору скорости, чистое магнитное поле не будет ускорять заряженную частицу в одном направлении, но будет производить круговое или спиральное движение (концепция, более подробно исследуемая в будущих разделах).Важно отметить, что магнитное поле не оказывает силы на статический электрический заряд. Эти два наблюдения соответствуют правилу, согласно которому магнитные поля не действуют .

Понимание правил для правой руки

Если вы считаете, что контент, доступный через Веб-сайт (как определено в наших Условиях обслуживания), нарушает или несколько ваших авторских прав, сообщите нам, отправив письменное уведомление («Уведомление о нарушении»), содержащее в информацию, описанную ниже, назначенному ниже агенту.Если репетиторы университета предпримут действия в ответ на ан Уведомление о нарушении, оно предпримет добросовестную попытку связаться со стороной, которая предоставила такой контент средствами самого последнего адреса электронной почты, если таковой имеется, предоставленного такой стороной Varsity Tutors.

Ваше Уведомление о нарушении прав может быть отправлено стороне, предоставившей доступ к контенту, или третьим лицам, таким как в виде ChillingEffects.org.

Обратите внимание, что вы будете нести ответственность за ущерб (включая расходы и гонорары адвокатам), если вы существенно искажать информацию о том, что продукт или действие нарушает ваши авторские права.Таким образом, если вы не уверены, что контент находится на Веб-сайте или по ссылке с него нарушает ваши авторские права, вам следует сначала обратиться к юристу.

Чтобы отправить уведомление, выполните следующие действия:

Вы должны включить следующее:

Физическая или электронная подпись правообладателя или лица, уполномоченного действовать от их имени; Идентификация авторских прав, которые, как утверждается, были нарушены; Описание характера и точного местонахождения контента, который, по вашему мнению, нарушает ваши авторские права, в \ достаточно подробностей, чтобы позволить репетиторам университетских школ найти и точно идентифицировать этот контент; например нам требуется а ссылка на конкретный вопрос (а не только на название вопроса), который содержит содержание и описание к какой конкретной части вопроса — изображению, ссылке, тексту и т. д. — относится ваша жалоба; Ваше имя, адрес, номер телефона и адрес электронной почты; и Ваше заявление: (а) вы добросовестно полагаете, что использование контента, который, по вашему мнению, нарушает ваши авторские права не разрешены законом, владельцем авторских прав или его агентом; (б) что все информация, содержащаяся в вашем Уведомлении о нарушении, является точной, и (c) под страхом наказания за лжесвидетельство, что вы либо владелец авторских прав, либо лицо, уполномоченное действовать от их имени.

Отправьте жалобу нашему уполномоченному агенту по адресу:

Чарльз Кон Varsity Tutors LLC
101 S. Hanley Rd, Suite 300
St. Louis, MO 63105

Или заполните форму ниже:

Правил для правой руки

Правил для правой руки
F магнитный — Сила магнитного поля, действующая на движущийся заряд
Когда заряд помещается в магнитное поле, этот заряд испытывает магнитная сила; при наличии двух условий:
1) заряд движется относительно магнитного поля,
2) скорость заряда имеет составляющую, перпендикулярную направление магнитного поля


Правила правой руки применяются к положительным зарядам или положительный (условный) ток
При использовании Правил правой руки важно помнить что правила предполагают, что заряды движутся обычным током (гипотетическая поток положительных зарядов).Чтобы применить Правило правой руки движущемуся отрицательному заряду, скорость (v) этого заряда должна быть обратной — чтобы представляют собой аналогичный условный ток.


Создание иллюстраций магнитного поля и заряда взаимодействия в 3D
Поскольку сила, действующая на движущийся заряд со стороны магнитного поле перпендикулярно как скорости заряда, так и направлению поля, чтобы проиллюстрировать эти взаимодействия, необходимо использовать два символа слева для обозначения движения в или из плоскости страницы.


Правило правой руки # 1 (RHR # 1)

Правило правой руки №1 определяет направления магнитной силы, обычного тока и магнитного поля. При любых двух тезисах можно найти третий.

Правой рукой:
укажите указательным пальцем в направлении скорости заряда, в , (вспомним обычный ток).

Укажите средним пальцем в направлении магнитного поля B.

Ваш большой палец теперь указывает в направлении магнитной силы, F магнитный .


Правило правой руки # 2 (RHR # 2)

Правило правой руки №2 определяет направление магнитного поле вокруг токоведущего провода и наоборот

Правой рукой:
Согните пальцы в полукруг вокруг проволоки, они указывают внутрь направление магнитного поля, B

Укажите большим пальцем в направлении обычного тока.



Применение правил правой руки:

Правила правой руки указывают только направление магнитного поля. Чтобы определить силу магнитного поля, некоторые полезные математические уравнения могут быть применены.



Для длинного прямого провода магнитное поле B равно: B = m o I / 2пр; где,
м o = 4p x 10 -7 Т · м / А и ос, называемые проницаемость свободного пространства, r — радиальное расстояние от провода в метрах, а I — ток в амперах.


Для одиночной проволочной петли магнитное поле, В через центр петли проходит: B = m o I / 2R; где,
м o — проницаемость свободного пространства, а R — радиус круговой петля из проволоки, измеренная в метрах. Оба поля для мотка проволоки и соленоид может быть построен из этого уравнения.

Вопросы для рассмотрения:

1. Протон движется со скоростью 5,0 x 10 6 м. / с, когда он встречает магнитное поле величиной 0,40 Тл, перпендикулярное к скорости протона. Сделайте набросок этой ситуации и обозначьте направления скорости протона, магнитного поля и магнитного сила.


2. Здесь длинный, по прямому проводу проходит ток I, равный 3.0 A. Частица, q с зарядом +6,5 х 10 -6 C, движется параллельно проводу в указанном направлении на расстоянии r = 0,050 м и скорость v = 280 м / с. Определите величину и направление магнитного поля, испытываемого зарядом.

Ссылки:

Катнелл Дж. И Джонсон К. (1998), Physics , Vol. 2, Wiley: NY, стр. 631, 33, 46 и 49.

Эта страница предоставлена ​​Камило Тафуром и Дэном Макисаком


[Вернуться к указателю экспериментов]

Правило правой руки — Видео по физике от Brightstorm

Итак, давайте поговорим о Правиле правой руки. Это одна из самых важных вещей, которая возникает, когда вы впервые изучаете магнитные поля, и на самом деле она впервые возникает, когда вы делаете кросс-продукты, может быть, в предварительном исчислении, но люди как бы забывают или, возможно, не принимали предварительные -calc, так что давайте поговорим об этом, потому что это не сложно, но легко испортить, если вы не привыкли к тому, как это работает, и я покажу вам 3 разных правила правой руки, на самом деле вроде 4, но на самом деле все равно 3 а потом немного другое.

Давайте просто рассмотрим это и посмотрим, как это работает. Итак, мы начнем с закона силы Лоренца, f равно qv cross b. Хорошо, перекрестные произведения работают следующим образом: вы берете правую руку, вы кладете большой палец в направлении первого вектора, ваши пальцы — в направлении второго вектора, а ваша ладонь указывает в направлении перекрестного произведения, поэтому, когда мы делаем это с законом силы Лоренца, первая векторная скорость, так что мой большой палец всегда должен играть роль скорости.Второе векторное магнитное поле, это означает, что мои пальцы должны играть роль магнитного поля, которое перекрестное произведение дает силу, так что моя ладонь всегда находится в направлении силы.

Хорошо, давайте немного поработаем с этим, но прежде всего я должен показать вам большое открытое соглашение, о котором вы можете знать или не знать. Магнитные поля должны быть в трех измерениях, но посмотрите, я рисую все на доске, эта доска представляет только двухмерное пространство, поэтому я могу указать, что я могу указать вверх, но как мне указать внутрь или внутрь.Мы делаем это следующим образом: мы говорим: смотрите, когда вы видите крест, это означает, что вы говорите о векторе, указывающем на доску, хорошо? В принципе, вы можете думать об этом так, как вы знаете, когда я помещаю вектор в виде стрелки, как бы это выглядело, если бы стрелка указывала на доску? Вы бы видели перья, и вот что такое крест, перья. Что, если он указывает за пределы доски? Что ж, теперь я собираюсь увидеть наконечник стрелки, поэтому я просто делаю небольшую точку, иногда я обведу ее, чтобы указать, что это не просто ошибочная точка, которую я только что поставил, но иногда я не особо беспокоюсь о это, например, если у меня их много, очевидно, что это представляет собой магнитное поле, поэтому в этом случае у меня есть положительный заряд, движущийся вниз в магнитном поле, направленном на плату.Хорошо, мы идем, большой палец — это скорость, пальцы — это магнитное поле, и обратите внимание, что моя ладонь теперь указывает вправо, так что это направление силы, действующей на этот заряд, вправо.

Хорошо, давай займемся этим. Что делать, если магнитное поле понижено, но положительный заряд попадает в плату? Хорошо, большой палец, пальцы, и теперь у меня есть сила, которая направлена ​​влево, хорошо. А что здесь? Это странно, потому что теперь у меня нет скорости, вместо этого у меня есть сила и магнитное поле, но это все еще забавно, я все еще могу делать то же самое.У меня нет скорости, поэтому я еще не знаю, что делаю большим пальцем, но у меня есть магнитное поле, так что оно выходит, верно? У меня есть сила, а это значит, что моя ладонь должна быть направлена ​​вниз и смотреть на нее! Мой большой палец теперь указывает в этом направлении, так что это должно быть направление положительного заряда, но он чувствует силу вниз, хорошо? Еще одна маленькая хитрость, а если это отрицательный заряд? На этот вопрос есть действительно простой ответ: вы просто притворяетесь, что это положительный заряд, а затем просто делаете то, что противоположно этому, но есть другой способ, который на самом деле более полезен на практике, потому что электроны имеют отрицательный заряд, поэтому часто на них На экзаменах вас будут часто спрашивать об электронах, и вы не хотите, чтобы они всегда делали это так, как если бы они были положительными, а потом просто не слушали их, поэтому вместо этого вы правильно используете левую руку? Итак, отрицательные заряды вы используете левой рукой, положительные заряды вы используете свою правую руку, и как только я осознаю, что собираюсь использовать свою левую руку, все идет точно так же, и теперь сила входит, и это так, как это происходит. .

Теперь вы можете задаться вопросом, что происходит с зарядом после того, как он попадает в магнитное поле. Оказывается, поскольку сила всегда перпендикулярна скорости, заряды, движущиеся в магнитных полях, всегда движутся по кругам, которые называются l’armoire прецессия, так что мы действительно можем видеть это в каждом из примеров, так что это действительно простая идея, если у меня есть заряд, который идет вниз, и сила, которая направляется к правильному буму, это круг l’armoire, хорошо? А что здесь? Что ж, у меня есть заряд, который действует слева, так что это круг l’armoire, хорошо? А что здесь? А теперь я иду сюда, сила в армуарном кругу, а как насчет этого парня? Сила внутри, так что это будет круглая армия. Я не могу это написать, верно? Но вы видите, что он всегда будет вращаться вокруг силовых линий магнитного поля, хорошо, это первая и, вероятно, самая полезная форма правила правой руки, но давайте посмотрим здесь на пару других.

Хорошо, первое, о чем я хочу упомянуть, и это действительно то же самое, что происходит, когда у меня есть ток в магнитном поле. Токи в скважинах перемещают заряды, так что это означает, что в этом магнитном поле движется много зарядов. Ток будет в направлении скорости, поэтому я просто говорю: хорошо, вместо скорости, мой большой палец — это текущая стрела, оставшаяся готовой, очень, очень просто и в основном то же самое, только вместо скорости мой большой палец теперь представляет ток.В большинстве случаев мы принимаем соглашение о том, что стрелка, связанная с током, здесь является направлением положительного заряда, поэтому она всегда правая, если только они явно не говорят вам, что отрицательные заряды движутся в этом направлении, а затем, конечно, только влево.

Хорошо, теперь есть два других правила правой руки, и они связаны с магнитными полями, возникающими от токов, так что это связано с чем-то, называемым законом биосоварта или чем-то, называемым законом амперов, поэтому идея состоит в том, что всякий раз, когда у вас есть ток, подобный это, с ним будет связано магнитное поле, поэтому, если у меня будет ток, который идет таким образом, будет магнитное поле, которое будет циркулировать вокруг этого тока, хорошо, так что это другая физическая ситуация, мы не можем ожидать правой руки Правило должно быть точно таким же, но, надеюсь, в этом случае оно почти такое же.Ток большого пальца, пальцы снова являются магнитным полем, но вместо того, чтобы держать их в стороне, вот что мы собираемся сделать, мы собираемся действовать так, как будто мы хватаем провод, хорошо? Итак, мы собираемся схватить провод, и наши пальцы являются магнитным полем, это означает, что в этом случае магнитное поле будет циркулировать вокруг точно так же, как мои пальцы циркулируют вокруг него, если я возьму его так, что это означает что выше тока магнитное поле выходит из платы, а под ним входит, так что вот оно, у меня магнитное поле циркулирует вокруг моего провода именно таким образом.

Хорошо, вот последний, а этот вроде как, самый разный, хорошо, но он также очень полезен. Что делать, если у меня есть токовая петля? Хорошо, хорошо, я мог бы сыграть в эту игру так же, как мы, и я мог бы сказать «хорошо, позволь мне схватиться за провод» 5, хорошо? Что ж, если я возьму провод вот так большим пальцем в направлении тока, тогда магнитное поле внутри будет выходить из платы, а внешнее будет входить в плату, так что это точно так же, как у нас просто не было разницы, поэтому почему я говорю, что это другое? Хорошо, потому что здесь мы применим правило правой руки немного по-другому, ладно.Вам не обязательно делать это, вы всегда можете сделать это так, но иногда более полезно вместо этого положить пальцы в направлении тока, и тогда ваш большой палец будет указывать в направлении магнитного поля в центре выход из токовой петли, конечно, он дает нам тот же ответ, что и в другом случае, но это связано с чем-то, называемым магнитным моментом, и поэтому вас могут попросить подумать о магнитных моментах и ​​этих токовых петлях, и это проще, когда сосредоточившись на этом, чтобы использовать правило правой руки, когда теперь ваш ток — это ваши пальцы, а большой палец — это магнитное поле.

Хорошо, это правило правой руки.

.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *